

Ember.js Guides
The guide for building Ambitious Web Applications

Precious Jahlom Agboado

This book is for sale at http://leanpub.com/emberjsguides

This version was published on 2014-10-04

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 Precious Jahlom Agboado

http://leanpub.com/emberjsguides
http://leanpub.com
http://leanpub.com/manifesto

Contents

Ember.js Guides . 1

Getting Started . 2
Planning The Application . 2
Creating a Static Mockup . 4
Obtaining Ember.Js And Dependencies . 6
Modeling Data . 8
Using Fixtures . 9
Displaying Model Data . 10
Displaying A Model’s Complete State . 12
Creating A New Model Instance . 13
Marking a Model as Complete or Incomplete . 15
Displaying the Number of Incomplete Todos . 17
Toggling Between Showing and Editing States . 18
Accepting Edits . 19
Deleting a Model . 22
Adding Child Routes . 23
Transitioning to Show Only Incomplete Todos . 24
Transitioning to Show Only Complete Todos . 26
Transitioning back to Show All Todos . 28
Displaying a Button to Remove All Completed Todos . 29
Indicating When All Todos Are Complete . 30
Toggling All Todos Between Complete and Incomplete . 31
Replacing the Fixture Adapter with Another Adapter . 32

Getting Ember . 34
Ember Builds . 34
Bower . 34
RubyGems . 35

Concepts . 36
Core Concept . 36
Naming Conventions . 38

CONTENTS

The Object Model . 44
Classes and Instances . 44
Computed Properties . 46
Computed Properties and Aggregate Data with @each . 49
Observers . 51
Bindings . 54
One-Way Bindings . 54
Reopening Classes and Instances . 55
Bindings, Observers, Computed Properties: What Do I Use When? 56

Application . 57
Creating an Application . 57

Templates . 58
The Application Template . 58
Handlebars Basics . 59
Conditionals . 60
Displaying a List of Items . 61
Changing Scope . 62
Binding Element Attributes . 63
Binding Element Class Names . 65
Links . 68
Actions . 71
Input Helpers . 76
Development Helpers . 78
Rendering with Helpers . 79
Writing Helpers . 83

Routing . 85
Introduction . 85
Defining Your Routes . 86
Generated Objects . 92
Specifying A Routes Model . 93
Setting Up A Controller . 97
Rendering A Template . 98
Redirecting . 100
Specifying The URL Type . 103
Query Parameters . 103
Asynchronous Routing . 110
Loading / Error Substates . 115
Preventing And Retrying Transitions . 122

Components . 125
Introduction . 125

CONTENTS

Defining A Component . 125
Passing Properties To A Component . 126
Wrapping Content in a Component . 128
Customizing A Component’s Element . 130
Handling User Interaction with Actions . 133
Sending Actions from Components to Your Application 134

Controllers . 139
Introduction . 139
Representing A Single Model With ObjectController . 142
Representing Multiple Models With ArrayController . 144
Managing Dependencies Between Controllers . 146

Models . 149
Introduction . 149
Defining Models . 155
Creating Deleting Records . 159
Pushing Records Into The Store . 160
Persisting Records . 161
Finding Records . 164
Working With Records . 165
Using Fixtures . 166
The REST Adapter . 168
Connecting to an HTTP Server . 173
Handling Metadata . 177
Customizing Adpters . 179
Frequently Asked Questions . 181

Views . 185
Introduction . 185
Defining A View . 186
Handling Events . 187
Customizing A Views Element . 190
Built-In Views . 194
Manually Managing View Hierachy . 195

Enumerables . 198
Enumerables . 198

Testing . 204
Introduction . 204
Integration Test . 205
Test Helpers . 206
Testing User Interaction . 210

CONTENTS

Unit Testing Basics . 211
Unit Test Helpers . 214
Unit Test Components . 216
Testing Controllers . 225
Testing Routes . 227
Testing Models . 229
Automating Tests with Runners . 231

Configuring Ember.js . 239
Disabling Prototype Extensions . 239
Embedding Applications . 241
Feature Flags . 242

Cookbook . 244
Introduction . 244
Contributing . 245
User Interface & Interaction . 246
Event Handling & Data Binding . 246
Helpers & Components . 247
Working with Objects . 248

Understanding Ember.js . 249
The View Layer . 249
Managing Asynchrony . 267
Keeping Templates Up-to-Date . 274
Debugging . 275
Routing . 275
Views / Templates . 276
Controllers . 277
Ember Data . 277
Observers / Binding . 277
Miscellaneous . 277
The Run Loop . 279

Contributing To Ember.js . 285
Adding New Features . 285
Repositories . 288

Ember.js Guides
Welcome to the Ember.js guides! This documentation will take you from total beginner to Ember
expert. It is designed to start from the basics, and slowly increase to more sophisticated concepts
until you know everything there is to know about building awesome web applications.

To help you get started, we’ve also made a 30-minute screencast that will guide you through building
a full-featured Ember.js application:

https://www.youtube.com/watch?v=1QHrlFlaXdI¹

Source code for the app we build in the video is available at https://github.com/tildeio/bloggr-
client”>https://github.com/tildeio/bloggr-client²

Most of these guides are designed to help you start building apps right away. If you’d like to know
more about the thinking behind Ember.js, you’ll find what you’re looking for in the Understanding
Ember.js³ section.

These guides are written in Markdown and are available on GitHub⁴, inside the source/guides

directory. If there is something missing, or you find a typo or mistake, please help us by filing an
issue or submitting a pull request. Thanks!

We’re excited for all of the great apps you’re going to build with Ember.js. To get started, select a
topic from the left. They are presented in the order that we think will be most useful to you as you’re
learning Ember.js, but you can also jump to whatever seems most interesting.

Good luck!

¹https://www.youtube.com/watch?v=1QHrlFlaXdI
²https://github.com/tildeio/bloggr-client”>https://github.com/tildeio/bloggr-client
³http://emberjs.com/guides/understanding-ember/the-view-layer
⁴https://github.com/emberjs/website/

https://www.youtube.com/watch?v=1QHrlFlaXdI
https://github.com/tildeio/bloggr-client">https://github.com/tildeio/bloggr-client
https://github.com/tildeio/bloggr-client">https://github.com/tildeio/bloggr-client
http://emberjs.com/guides/understanding-ember/the-view-layer
http://emberjs.com/guides/understanding-ember/the-view-layer
https://github.com/emberjs/website/
https://www.youtube.com/watch?v=1QHrlFlaXdI
https://github.com/tildeio/bloggr-client">https://github.com/tildeio/bloggr-client
http://emberjs.com/guides/understanding-ember/the-view-layer
https://github.com/emberjs/website/

Getting Started
Welcome to Ember.js! This guide will take you through creating a simple application using Ember.js
and briefly explain the core concepts behind the framework. This guide assumes you are already
familiar with basic web technologies like JavaScript, HTML, and CSS and development technologies
like your browser’s web inspector⁵.

In this guide we will walk through the steps of building the popular TodoMVC demo application⁶.

Planning The Application

TodoMVC, despite its small size, contains most of the behaviors typical in modern single page
applications. Before continuing, take a moment to understand how TodoMVC works from the user’s
perspective.

TodoMVC has the following main features:

⁵https://developers.google.com/chrome-developer-tools/
⁶http://todomvc.com

https://developers.google.com/chrome-developer-tools/
http://todomvc.com
https://developers.google.com/chrome-developer-tools/
http://todomvc.com

Getting Started 3

TODO MVC

1. It displays a list of todos for a user to see. This list will grow and shrink as the user adds and
removes todos.

2. It accepts text in an <input> for entry of new todos. Hitting the <enter> key creates the new
item and displays it in the list below.

3. It provides a checkbox to toggle between complete and incomplete states for each todo. New
todos start as incomplete.

4. It displays the number of incomplete todos and keeps this count updated as new todos are
added and existing todos are completed.

5. It provides links for the user to navigate between lists showing all, incomplete, and completed
todos.

6. It provides a button to remove all completed todos and informs the user of the number of
completed todos. This button will not be visible if there are no completed todos.

7. It provides a button to remove a single specific todo. This button displays as a user hovers
over a todo and takes the form of a red X.

8. It provides a checkbox to toggle all existing todos between complete and incomplete states.
Further, when all todos are completed this checkbox becomes checked without user interac-
tion.

9. It allows a user to double click to show a textfield for editing a single todo. Hitting the <enter>
key or moving focus outside of this textfield will persist the changed text.

Getting Started 4

10. It retains a user’s todos between application loads by using the browser’s localstorage

mechanism.

You can interact with a completed version of the application by visiting the TodoMVC site⁷.

Creating a Static Mockup

Before adding any code, we can roughly sketch out the layout of our application. In your text editor,
create a new file and name it index.html. This file will contain theHTML templates of our completed
application and trigger requests for the additional image, stylesheet, and JavaScript resources.

To start, add the following text to index.html:

1 <!doctype html>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <title>Ember.js • TodoMVC</title>

6 <link rel="stylesheet" href="style.css">

7 </head>

8 <body>

9 <section id="todoapp">

10 <header id="header">

11 <h1>todos</h1>

12 <input type="text" id="new-todo" placeholder="What needs to be done?" />

13 </header>

14

15 <section id="main">

16 <ul id="todo-list">

17 <li class="completed">

18 <input type="checkbox" class="toggle">

19 <label>Learn Ember.js</label><button class="destroy"></button>

20

21

22 <input type="checkbox" class="toggle">

23 <label>...</label><button class="destroy"></button>

24

25

26 <input type="checkbox" class="toggle">

27 <label>Profit!</label><button class="destroy"></button>

⁷http://todomvc.com/architecture-examples/emberjs/

http://todomvc.com/architecture-examples/emberjs/
http://todomvc.com/architecture-examples/emberjs/

Getting Started 5

28

29

30

31 <input type="checkbox" id="toggle-all">

32 </section>

33

34 <footer id="footer">

35

36 2 todos left

37

38 <ul id="filters">

39

40 All

41

42

43 Active

44

45

46 Completed

47

48

49

50 <button id="clear-completed">

51 Clear completed (1)

52 </button>

53 </footer>

54 </section>

55

56 <footer id="info">

57 <p>Double-click to edit a todo</p>

58 </footer>

59 </body>

60 </html>

The associated stylesheet⁸ and background image⁹ for this project should be downloaded and placed
in the same directory as index.html

Open index.html in your web browser to ensure that all assets are loading correctly. You should
see the TodoMVC application with three hard-coded elements where the text of each todo will
appear.

⁸http://emberjs.com.s3.amazonaws.com/getting-started/style.css
⁹http://emberjs.com.s3.amazonaws.com/getting-started/bg.png

http://emberjs.com.s3.amazonaws.com/getting-started/style.css
http://emberjs.com.s3.amazonaws.com/getting-started/bg.png
http://emberjs.com.s3.amazonaws.com/getting-started/style.css
http://emberjs.com.s3.amazonaws.com/getting-started/bg.png

Getting Started 6

Live Preview

Ember.js • TodoMVC¹⁰

Additional Resources

• Changes in this step in diff format¹¹
• TodoMVC stylesheet¹²
• TodoMVC background image¹³

Obtaining Ember.Js And Dependencies

TodoMVC has a few dependencies:

• jQuery¹⁴
• Handlebars¹⁵
• Ember.js 1.3¹⁶
• Ember Data 1.0 beta¹⁷

For this example, all of these resources should be stored in the folder js/libs located in the same
location as index.html. Update your index.html to load these files by placing <script> tags just
before your closing </body> tag in the following order:

1 <!-- ... additional lines truncated for brevity ... -->

2 <script src="js/libs/jquery-1.10.2.min.js"></script>

3 <script src="js/libs/handlebars-1.0.0.js"></script>

4 <script src="js/libs/ember.js"></script>

5 <script src="js/libs/ember-data.js"></script>

6 </body>

7 <!-- ... additional lines truncated for brevity ... -->

Reload your web browser to ensure that all files have been referenced correctly and no errors occur.

If you are using a package manager, such as bower¹⁸, make sure to checkout the Getting Ember¹⁹
guide for info on other ways to get Ember.js (this guide is dependant on ember-data v1.0 or greater
so please be sure to use the latest beta).

¹⁰http://jsbin.com/uduyip
¹¹https://github.com/emberjs/quickstart-code-sample/commit/4d91f9fa1f6be4f4675b54babd3074550095c930
¹²http://emberjs.com.s3.amazonaws.com/getting-started/style.css
¹³http://emberjs.com.s3.amazonaws.com/getting-started/bg.png
¹⁴http://code.jquery.com/jquery-1.10.2.min.js
¹⁵http://builds.handlebarsjs.com.s3.amazonaws.com/handlebars-1.0.0.js
¹⁶http://builds.emberjs.com/tags/v1.3.0/ember.js
¹⁷http://builds.emberjs.com/tags/v1.0.0-beta.5/ember-data.js
¹⁸http://bower.io
¹⁹http://emberjs.com/guides/getting-ember

http://jsbin.com/uduyip
https://github.com/emberjs/quickstart-code-sample/commit/4d91f9fa1f6be4f4675b54babd3074550095c930
http://emberjs.com.s3.amazonaws.com/getting-started/style.css
http://emberjs.com.s3.amazonaws.com/getting-started/bg.png
http://code.jquery.com/jquery-1.10.2.min.js
http://builds.handlebarsjs.com.s3.amazonaws.com/handlebars-1.0.0.js
http://builds.emberjs.com/tags/v1.3.0/ember.js
http://builds.emberjs.com/tags/v1.0.0-beta.5/ember-data.js
http://bower.io
http://emberjs.com/guides/getting-ember
http://jsbin.com/uduyip
https://github.com/emberjs/quickstart-code-sample/commit/4d91f9fa1f6be4f4675b54babd3074550095c930
http://emberjs.com.s3.amazonaws.com/getting-started/style.css
http://emberjs.com.s3.amazonaws.com/getting-started/bg.png
http://code.jquery.com/jquery-1.10.2.min.js
http://builds.handlebarsjs.com.s3.amazonaws.com/handlebars-1.0.0.js
http://builds.emberjs.com/tags/v1.3.0/ember.js
http://builds.emberjs.com/tags/v1.0.0-beta.5/ember-data.js
http://bower.io
http://emberjs.com/guides/getting-ember

Getting Started 7

Live Preview

Ember.js • TodoMVC²⁰

Additional Resources

• Changes in this step in diff format²¹

Next, we will create an Ember.js application, a route (‘/’), and convert our static mockup into a
Handlebars template.

Inside your js directory, add a file for the application at js/application.js and a file for the router
at js/router.js. You may place these files anywhere you like (even just putting all code into the
same file), but this guide will assume you have separated them into their own files and named them
as indicated.

Inside js/application.js add the following code:

1 window.Todos = Ember.Application.create();

This will create a new instance of Ember.Application and make it available as a variable named
Todos within your browser’s JavaScript environment.

Inside js/router.js add the following code:

1 Todos.Router.map(function() {

2 this.resource('todos', { path: '/' });

3 });

This will tell Ember.js to detect when the application’s URL matches '/' and to render the todos

template.

Next, update your index.html to wrap the inner contents of <body> in a Handlebars script tag and
include js/application.js and js/router.js after Ember.js and other javascript dependencies:

²⁰http://jsbin.com/ijefig
²¹https://github.com/emberjs/quickstart-code-sample/commit/0880d6e21b83d916a02fd17163f58686a37b5b2c

http://jsbin.com/ijefig
https://github.com/emberjs/quickstart-code-sample/commit/0880d6e21b83d916a02fd17163f58686a37b5b2c
http://jsbin.com/ijefig
https://github.com/emberjs/quickstart-code-sample/commit/0880d6e21b83d916a02fd17163f58686a37b5b2c

Getting Started 8

1 <!-- ... additional lines truncated for brevity ... -->

2 <body>

3 <script type="text/x-handlebars" data-template-name="todos">

4

5 <section id="todoapp">

6 {{! ... additional lines truncated for brevity ... }}

7 </section>

8

9 <footer id="info">

10 <p>Double-click to edit a todo</p>

11 </footer>

12

13 </script>

14

15 <!-- ... Ember.js and other javascript dependencies ... -->

16 <script src="js/application.js"></script>

17 <script src="js/router.js"></script>

18 </body>

19 <!-- ... additional lines truncated for brevity ... -->

Reload your web browser to ensure that all files have been referenced correctly and no errors occur.

Live Preview

Ember.js • TodoMVC²²

Additional Resources

• Changes in this step in diff format²³
• Handlebars Guide²⁴
• Ember.Application Guide²⁵
• Ember.Application API Documentation²⁶

Modeling Data

Next we will create a model class to describe todo items.

Create a file at js/models/todo.js and put the following code inside:

²²http://jsbin.com/OKEMIJi
²³https://github.com/emberjs/quickstart-code-sample/commit/8775d1bf4c05eb82adf178be4429e5b868ac145b
²⁴http://emberjs.com/guides/templates/handlebars-basics
²⁵http://emberjs.com/guides/application
²⁶http://emberjs.com/api/classes/Ember.Application.html

http://jsbin.com/OKEMIJi
https://github.com/emberjs/quickstart-code-sample/commit/8775d1bf4c05eb82adf178be4429e5b868ac145b
http://emberjs.com/guides/templates/handlebars-basics
http://emberjs.com/guides/application
http://emberjs.com/api/classes/Ember.Application.html
http://jsbin.com/OKEMIJi
https://github.com/emberjs/quickstart-code-sample/commit/8775d1bf4c05eb82adf178be4429e5b868ac145b
http://emberjs.com/guides/templates/handlebars-basics
http://emberjs.com/guides/application
http://emberjs.com/api/classes/Ember.Application.html

Getting Started 9

1 Todos.Todo = DS.Model.extend({

2 title: DS.attr('string'),

3 isCompleted: DS.attr('boolean')

4 });

This code creates a new class Todo and places it within your application’s namespace. Each todo will
have two attributes: title and isCompleted.

You may place this file anywhere you like (even just putting all code into the same file), but this
guide will assume you have created a file and named it as indicated.

Finally, update your index.html to include a reference to this new file:

1 <!-- ... additional lines truncated for brevity ... -->

2 <script src="js/models/todo.js"></script>

3 </body>

4 <!-- ... additional lines truncated for brevity ... -->

Reload your web browser to ensure that all files have been referenced correctly and no errors occur.

Live Preview

Ember.js • TodoMVC²⁷

Additional Resources

• Changes in this step in diff format²⁸
• Models Guide²⁹

Using Fixtures

Now we’ll add fixture data. Fixtures are a way to put sample data into an application before
connecting the application to long-term persistence.

First, update js/application.js to indicate that your application’s ApplicationAdapter is an
extension of the DS.FixtureAdapter. Adapters are responsible for communicating with a source
of data for your application. Typically this will be a web service API, but in this case we are using
an adapter designed to load fixture data:

²⁷http://jsbin.com/AJoyOGo
²⁸https://github.com/emberjs/quickstart-code-sample/commit/a1ccdb43df29d316a7729321764c00b8d850fcd1
²⁹http://emberjs.com/guides/models

http://jsbin.com/AJoyOGo
https://github.com/emberjs/quickstart-code-sample/commit/a1ccdb43df29d316a7729321764c00b8d850fcd1
http://emberjs.com/guides/models
http://jsbin.com/AJoyOGo
https://github.com/emberjs/quickstart-code-sample/commit/a1ccdb43df29d316a7729321764c00b8d850fcd1
http://emberjs.com/guides/models

Getting Started 10

1 window.Todos = Ember.Application.create();

2

3 Todos.ApplicationAdapter = DS.FixtureAdapter.extend();

Next, update the file at js/models/todo.js to include the following fixture data:

1 // ... additional lines truncated for brevity ...

2 Todos.Todo.FIXTURES = [

3 {

4 id: 1,

5 title: 'Learn Ember.js',

6 isCompleted: true

7 },

8 {

9 id: 2,

10 title: '...',

11 isCompleted: false

12 },

13 {

14 id: 3,

15 title: 'Profit!',

16 isCompleted: false

17 }

18];

Reload your web browser to ensure that all files have been referenced correctly and no errors occur.

Live Preview

Ember.js • TodoMVC³⁰

Additional Resources

• Changes in this step in diff format³¹

Displaying Model Data

Next we’ll update our application to display dynamic todos, replacing our hard coded section in the
todos template.

Inside the file js/router.js implement a TodosRoute class with a model function that returns all
the existing todos:

³⁰http://jsbin.com/Ovuw
³¹https://github.com/emberjs/quickstart-code-sample/commit/a586fc9de92cad626ea816e9bb29445525678098

http://jsbin.com/Ovuw
https://github.com/emberjs/quickstart-code-sample/commit/a586fc9de92cad626ea816e9bb29445525678098
http://jsbin.com/Ovuw
https://github.com/emberjs/quickstart-code-sample/commit/a586fc9de92cad626ea816e9bb29445525678098

Getting Started 11

1 // ... additional lines truncated for brevity ...

2 Todos.TodosRoute = Ember.Route.extend({

3 model: function() {

4 return this.store.find('todo');

5 }

6 });

Because we hadn’t implemented this class before, Ember.js provided a Route for us with the default
behavior of rendering a matching template named todos using its naming conventions for object
creation³².

Now that we need custom behavior (returning a specific set of models), we implement the class and
add the desired behavior.

Update index.html to replace the static elements with a Handlebars {{each}} helper and a
dynamic {{title}} for each item.

1 {{! ... additional lines truncated for brevity ... }}

2 <ul id="todo-list">

3 {{#each}}

4

5 <input type="checkbox" class="toggle">

6 <label>{{title}}</label><button class="destroy"></button>

7

8 {{/each}}

9

10 {{! ... additional lines truncated for brevity ... }}

The template loops over the content of its controller. This controller is an instance of ArrayController
that Ember.js has provided for us as the container for our models. Because we don’t need custom
behavior for this object yet, we can use the default object provided by the framework.

Reload your web browser to ensure that all files have been referenced correctly and no errors occur.

Live Preview

Ember.js • TodoMVC³³

³²http://emberjs.com/guides/concepts/naming-conventions/
³³http://jsbin.com/EJISAne

http://emberjs.com/guides/concepts/naming-conventions/
http://emberjs.com/guides/concepts/naming-conventions/
http://jsbin.com/EJISAne
http://emberjs.com/guides/concepts/naming-conventions/
http://jsbin.com/EJISAne

Getting Started 12

Additional Resources

• Changes in this step in diff format³⁴
• Templates Guide³⁵
• Controllers Guide³⁶
• Naming Conventions Guide³⁷

Displaying A Model’s Complete State

TodoMVC strikes through completed todos by applying a CSS class completed to the element.
Update index.html to apply a CSS class to this element when a todo’s isCompleted property is true:

1 {{! ... additional lines truncated for brevity ... }}

2 <li {{bind-attr class="isCompleted:completed"}}>

3 <input type="checkbox" class="toggle">

4 <label>{{title}}</label><button class="destroy"></button>

5

6 {{! ... additional lines truncated for brevity ... }}

This code will apply the CSS class completed when the todo’s isCompleted property is true and
remove it when the property becomes false.

The first fixture todo in our application has an isCompleted property of true. Reload the application
to see the first todo is now decorated with a strike-through to visually indicate it has been completed.

Live Preview

Ember.js • TodoMVC³⁸

Additional Resources

• Changes in this step in diff format³⁹
• bind-attr API documentation⁴⁰
• bind and bind-attr article by Peter Wagenet⁴¹

³⁴https://github.com/emberjs/quickstart-code-sample/commit/87bd57700110d9dd0b351c4d4855edf90baac3a8
³⁵http://emberjs.com/guides/templates/handlebars-basics
³⁶http://emberjs.com/guides/controllers
³⁷http://emberjs.com/guides/concepts/naming-conventions
³⁸http://jsbin.com/oKuwomo
³⁹https://github.com/emberjs/quickstart-code-sample/commit/b15e5deffc41cf5ba4161808c7f46a283dc2277f
⁴⁰http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_bind-attr
⁴¹http://www.emberist.com/2012/04/06/bind-and-bindattr.html

https://github.com/emberjs/quickstart-code-sample/commit/87bd57700110d9dd0b351c4d4855edf90baac3a8
http://emberjs.com/guides/templates/handlebars-basics
http://emberjs.com/guides/controllers
http://emberjs.com/guides/concepts/naming-conventions
http://jsbin.com/oKuwomo
https://github.com/emberjs/quickstart-code-sample/commit/b15e5deffc41cf5ba4161808c7f46a283dc2277f
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_bind-attr
http://www.emberist.com/2012/04/06/bind-and-bindattr.html
https://github.com/emberjs/quickstart-code-sample/commit/87bd57700110d9dd0b351c4d4855edf90baac3a8
http://emberjs.com/guides/templates/handlebars-basics
http://emberjs.com/guides/controllers
http://emberjs.com/guides/concepts/naming-conventions
http://jsbin.com/oKuwomo
https://github.com/emberjs/quickstart-code-sample/commit/b15e5deffc41cf5ba4161808c7f46a283dc2277f
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_bind-attr
http://www.emberist.com/2012/04/06/bind-and-bindattr.html

Getting Started 13

Creating A New Model Instance

Next we’ll update our static HTML <input> to an Ember view that can expose more complex
behaviors. Update index.html to replace the new todo <input> with an {{input}} helper:

1 {{! ... additional lines truncated for brevity ... }}

2 <h1>todos</h1>

3 {{input type="text" id="new-todo" placeholder="What needs to be done?"

4 value=newTitle action="createTodo"}}

5 {{! ... additional lines truncated for brevity ... }}

This will render an <input> element at this location with the same id and placeholder attributes
applied. It will also connect the newTitle property of this template’s controller to the value attribute
of the <input>. When one changes, the other will automatically update to remain synchronized.

Additionally, we connect user interaction (pressing the <enter> key) to a method createTodo on
this template’s controller.

Because we have not needed a custom controller behavior until this point, Ember.js provided a
default controller object for this template. To handle our new behavior, we can implement the
controller class Ember.js expects to find according to its naming conventions⁴² and add our custom
behavior. This new controller class will automatically be associated with this template for us.

Add a js/controllers/todos_controller.js file. You may place this file anywhere you like (even
just putting all code into the same file), but this guide will assume you have created the file and
named it as indicated.

Inside js/controllers/todos_controller.js implement the controller Ember.js expects to find
according to its naming conventions⁴³:

1 Todos.TodosController = Ember.ArrayController.extend({

2 actions: {

3 createTodo: function() {

4 // Get the todo title set by the "New Todo" text field

5 var title = this.get('newTitle');

6 if (!title) { return false; }

7 if (!title.trim()) { return; }

8

9 // Create the new Todo model

10 var todo = this.store.createRecord('todo', {

11 title: title,

12 isCompleted: false

⁴²http://emberjs.com/guides/concepts/naming-conventions
⁴³http://emberjs.com/guides/concepts/naming-conventions

http://emberjs.com/guides/concepts/naming-conventions
http://emberjs.com/guides/concepts/naming-conventions
http://emberjs.com/guides/concepts/naming-conventions
http://emberjs.com/guides/concepts/naming-conventions

Getting Started 14

13 });

14

15 // Clear the "New Todo" text field

16 this.set('newTitle', '');

17

18 // Save the new model

19 todo.save();

20 }

21 }

22 });

This controller will now respond to user action by using its newTitle property as the title of a
new todo whose isCompleted property is false. Then it will clear its newTitle property which will
synchronize to the template and reset the textfield. Finally, it persists any unsaved changes on the
todo.

In index.html include js/controllers/todos_controller.js as a dependency:

1 <!--- ... additional lines truncated for brevity ... -->

2 <script src="js/models/todo.js"></script>

3 <script src="js/controllers/todos_controller.js"></script>

4 </body>

5 <!--- ... additional lines truncated for brevity ... -->

Reload your web browser to ensure that all files have been referenced correctly and no errors occur.
You should now be able to add additional todos by entering a title in the <input> and hitting the
<enter> key.

Live Preview

Ember.js • TodoMVC⁴⁴

Additional Resources

• Changes in this step in diff format⁴⁵
• Ember.TextField API documention⁴⁶
• Ember Controller Guide⁴⁷
• Naming Conventions Guide⁴⁸

⁴⁴href=”http://jsbin.com/ImukUZO
⁴⁵https://github.com/emberjs/quickstart-code-sample/commit/60feb5f369c8eecd9df3f561fbd01595353ce803
⁴⁶http://emberjs.com/api/classes/Ember.TextField.html
⁴⁷http://emberjs.com/guides/controllers
⁴⁸http://emberjs.com/guides/concepts/naming-conventions

href="http://jsbin.com/ImukUZO
https://github.com/emberjs/quickstart-code-sample/commit/60feb5f369c8eecd9df3f561fbd01595353ce803
http://emberjs.com/api/classes/Ember.TextField.html
http://emberjs.com/guides/controllers
http://emberjs.com/guides/concepts/naming-conventions
href="http://jsbin.com/ImukUZO
https://github.com/emberjs/quickstart-code-sample/commit/60feb5f369c8eecd9df3f561fbd01595353ce803
http://emberjs.com/api/classes/Ember.TextField.html
http://emberjs.com/guides/controllers
http://emberjs.com/guides/concepts/naming-conventions

Getting Started 15

Marking a Model as Complete or Incomplete

In this step we’ll update our application to allow a user to mark a todo as complete or incomplete
and persist the updated information.

In index.html update your template to wrap each todo in its own controller by adding an
itemController argument to the {{each}} Handlebars helper. Then convert our static <input

type="checkbox"> into a {{input}} helper:

1 {{! ... additional lines truncated for brevity ... }}

2 {{#each itemController="todo"}}

3 <li {{bind-attr class="isCompleted:completed"}}>

4 {{input type="checkbox" checked=isCompleted class="toggle"}}

5 <label>{{title}}</label><button class="destroy"></button>

6

7 {{/each}}

8 {{! ... additional lines truncated for brevity ... }}

When this {{input}} is rendered it will ask for the current value of the controller’s isCompleted
property. When a user clicks this input, it will set the value of the controller’s isCompleted property
to either true or false depending on the new checked value of the input.

Implement the controller for each todo by matching the name used as the itemController value
to a class in your application Todos.TodoController. Create a new file at js/controllers/todo_-
controller.js for this code. You may place this file anywhere you like (even just putting all code
into the same file), but this guide will assume you have created the file and named it as indicated.

Inside js/controllers/todo_controller.js add code for Todos.TodoController and its isCompleted
property:

1 Todos.TodoController = Ember.ObjectController.extend({

2 isCompleted: function(key, value){

3 var model = this.get('model');

4

5 if (value === undefined) {

6 // property being used as a getter

7 return model.get('isCompleted');

8 } else {

9 // property being used as a setter

10 model.set('isCompleted', value);

11 model.save();

12 return value;

13 }

Getting Started 16

14 }.property('model.isCompleted')

15 });

When called from the template to display the current isCompleted state of the todo, this property
will proxy that question⁴⁹ to its underlying model. When called with a value because a user has
toggled the checkbox in the template, this property will set the isCompleted property of its model
to the passed value (true or false), persist the model update, and return the passed value so the
checkbox will display correctly.

The isCompleted function is marked a computed property⁵⁰ whose value is dependent on the value
of model.isCompleted.

In index.html include js/controllers/todo_controller.js as a dependency:

1 <!--- ... additional lines truncated for brevity ... -->

2 <script src="js/models/todo.js"></script>

3 <script src="js/controllers/todos_controller.js"></script>

4 <script src="js/controllers/todo_controller.js"></script>

5 </body>

6 <!--- ... additional lines truncated for brevity ... -->

Reload your web browser to ensure that all files have been referenced correctly and no errors occur.
You should now be able to change the isCompleted property of a todo.

Live Preview

Ember.js • TodoMVC⁵¹

Additional Resources

• Changes in this step in diff format⁵²
• Ember.Checkbox API documentation⁵³
• Ember Controller Guide⁵⁴
• Computed Properties Guide⁵⁵
• Naming Conventions Guide⁵⁶

⁴⁹http://emberjs.com/api/classes/Ember.ObjectController.html
⁵⁰http://emberjs.com/guides/object-model/computed-properties/
⁵¹http://jsbin.com/UDoPajA
⁵²https://github.com/emberjs/quickstart-code-sample/commit/8d469c04c237f39a58903a3856409a2592cc18a9
⁵³/api/classes/Ember.Checkbox.html
⁵⁴http://emberjs.com/guides/controllers
⁵⁵http://emberjs.com/guides/object-model/computed-properties/
⁵⁶http://emberjs.com/guides/concepts/naming-conventions

http://emberjs.com/api/classes/Ember.ObjectController.html
http://emberjs.com/guides/object-model/computed-properties/
http://jsbin.com/UDoPajA
https://github.com/emberjs/quickstart-code-sample/commit/8d469c04c237f39a58903a3856409a2592cc18a9
/api/classes/Ember.Checkbox.html
http://emberjs.com/guides/controllers
http://emberjs.com/guides/object-model/computed-properties/
http://emberjs.com/guides/concepts/naming-conventions
http://emberjs.com/api/classes/Ember.ObjectController.html
http://emberjs.com/guides/object-model/computed-properties/
http://jsbin.com/UDoPajA
https://github.com/emberjs/quickstart-code-sample/commit/8d469c04c237f39a58903a3856409a2592cc18a9
/api/classes/Ember.Checkbox.html
http://emberjs.com/guides/controllers
http://emberjs.com/guides/object-model/computed-properties/
http://emberjs.com/guides/concepts/naming-conventions

Getting Started 17

Displaying the Number of Incomplete Todos

Next we’ll update our template’s hard-coded count of completed todos to reflect the actual number
of completed todos. Update index.html to use two properties:

1 {{! ... additional lines truncated for brevity ... }}

2

3 {{remaining}} {{inflection}} left

4

5 {{! ... additional lines truncated for brevity ... }}

Implement these properties as part of this template’s controller, the Todos.TodosController:

1 // ... additional lines truncated for brevity ...

2 actions: {

3 // ... additional lines truncated for brevity ...

4 },

5

6 remaining: function() {

7 return this.filterBy('isCompleted', false).get('length');

8 }.property('@each.isCompleted'),

9

10 inflection: function() {

11 var remaining = this.get('remaining');

12 return remaining === 1 ? 'item' : 'items';

13 }.property('remaining')

14 // ... additional lines truncated for brevity ...

The remaining property will return the number of todos whose isCompleted property is false. If the
isCompleted value of any todo changes, this property will be recomputed. If the value has changed,
the section of the template displaying the count will be automatically updated to reflect the new
value.

The inflection property will return either a plural or singular version of the word “item” depending
on how many todos are currently in the list. The section of the template displaying the count will
be automatically updated to reflect the new value.

Reload your web browser to ensure that no errors occur. You should now see an accurate number
for remaining todos.

Live Preview

Ember.js • TodoMVC⁵⁷

⁵⁷http://jsbin.com/onOCIrA

http://jsbin.com/onOCIrA
http://jsbin.com/onOCIrA

Getting Started 18

Additional Resources

• Changes in this step in diff format⁵⁸
• Computed Properties Guide⁵⁹

Toggling Between Showing and Editing States

TodoMVC allows users to double click each todo to display a text <input> element where the todo’s
title can be updated. Additionally the element for each todo obtains the CSS class editing for
style and positioning.

We’ll update the application to allow users to toggle into this editing state for a todo. In index.html

update the contents of the {{each}} Handlebars helper to:

1 {{! ... additional lines truncated for brevity ... }}

2 {{#each itemController="todo"}}

3 <li {{bind-attr class="isCompleted:completed isEditing:editing"}}>

4 {{#if isEditing}}

5 <input class="edit">

6 {{else}}

7 {{input type="checkbox" checked=isCompleted class="toggle"}}

8 <label {{action "editTodo" on="doubleClick"}}>{{title}}</label><button cla\

9 ss="destroy"></button>

10 {{/if}}

11

12 {{/each}}

13 {{! ... additional lines truncated for brevity ... }}

The above code applies three new behaviors to our application: it applies the CSS class editing
when the controller’s isEditing property is true and removes it when the isEditing property is
false. We add a new {{action}} helper to the <label> so double-clicks will call editTodo on this
todo’s controller. Finally, we wrap our todo in a Handlebars {{if}} helper so a text <input> will
display when we are editing and the todos title will display when we are not editing.

Inside js/controllers/todo_controller.js we’ll implement the matching logic for this template
behavior:

⁵⁸https://github.com/emberjs/quickstart-code-sample/commit/b418407ed9666714c82d894d6b70f785674f7a45
⁵⁹http://emberjs.com/guides/object-model/computed-properties/

https://github.com/emberjs/quickstart-code-sample/commit/b418407ed9666714c82d894d6b70f785674f7a45
http://emberjs.com/guides/object-model/computed-properties/
https://github.com/emberjs/quickstart-code-sample/commit/b418407ed9666714c82d894d6b70f785674f7a45
http://emberjs.com/guides/object-model/computed-properties/

Getting Started 19

1 Todos.TodoController = Ember.ObjectController.extend({

2 actions: {

3 editTodo: function() {

4 this.set('isEditing', true);

5 }

6 },

7

8 isEditing: false,

9

10 // ... additional lines truncated for brevity ...

Above we defined an initial isEditing value of false for controllers of this type and said that when
the editTodo action is called it should set the isEditing property of this controller to true. This will
automatically trigger the sections of template that use isEditing to update their rendered content.

Reload your web browser to ensure that no errors occur. You can now double-click a todo to edit it.

Live Preview

Ember.js • TodoMVC⁶⁰

Additional Resources

• Changes in this step in diff format⁶¹
• Handlebars Conditionals Guide⁶²
• bind-attr API documentation⁶³
• action API documentation⁶⁴
• bind and bindAttr article by Peter Wagenet⁶⁵

Accepting Edits

In the previous step we updated TodoMVC to allow a user to toggle the display of a text <input>
for editing a todo’s title. Next, we’ll add the behavior that immediately focuses the <input> when it
appears, accepts user input and, when the user presses the <enter> key or moves focus away from
the editing <input> element, persists these changes, then redisplays the todo with its newly updated
text.

⁶⁰http://jsbin.com/usiXemu
⁶¹https://github.com/emberjs/quickstart-code-sample/commit/616bc4f22900bbaa2bf9bdb8de53ba41209d8cc0
⁶²http://emberjs.com/guides/templates/conditionals
⁶³http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_bind-attr
⁶⁴http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_action
⁶⁵http://www.emberist.com/2012/04/06/bind-and-bindattr.html

http://jsbin.com/usiXemu
https://github.com/emberjs/quickstart-code-sample/commit/616bc4f22900bbaa2bf9bdb8de53ba41209d8cc0
http://emberjs.com/guides/templates/conditionals
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_bind-attr
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_action
http://www.emberist.com/2012/04/06/bind-and-bindattr.html
http://jsbin.com/usiXemu
https://github.com/emberjs/quickstart-code-sample/commit/616bc4f22900bbaa2bf9bdb8de53ba41209d8cc0
http://emberjs.com/guides/templates/conditionals
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_bind-attr
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_action
http://www.emberist.com/2012/04/06/bind-and-bindattr.html

Getting Started 20

To accomplish this, we’ll create a new custom component and register it with Handlebars to make
it available to our templates.

Create a new file js/views/edit_todo_view.js. You may place this file anywhere you like (even
just putting all code into the same file), but this guide will assume you have created the file and
named it as indicated.

In js/views/edit_todo_view.js create an extension of Ember.TextField and register it as a
helper⁶⁶:

1 Todos.EditTodoView = Ember.TextField.extend({

2 didInsertElement: function() {

3 this.$().focus();

4 }

5 });

6

7 Ember.Handlebars.helper('edit-todo', Todos.EditTodoView);

In index.html require this new file:

1 <!--- ... additional lines truncated for brevity ... -->

2 <script src="js/controllers/todo_controller.js"></script>

3 <script src="js/views/edit_todo_view.js"></script>

4 </body>

5 <!--- ... additional lines truncated for brevity ... -->

In index.html replace the static <input> element with our custom {{edit-todo}} component,
connecting the value property, and actions:

1 {{! ... additional lines truncated for brevity ... }}

2 {{#if isEditing}}

3 {{edit-todo class="edit" value=title focus-out="acceptChanges"

4 insert-newline="acceptChanges"}}

5 {{else}}

6 {{! ... additional lines truncated for brevity ... }}

Pressing the <enter> key will trigger the acceptChanges event on the instance of TodoController.
Moving focus away from the <input>will trigger the focus-out event, calling amethod acceptChanges
on this view’s instance of TodoController.

⁶⁶http://emberjs.com/api/classes/Ember.Handlebars.html#method_helper

http://emberjs.com/api/classes/Ember.Handlebars.html#method_helper
http://emberjs.com/api/classes/Ember.Handlebars.html#method_helper

Getting Started 21

Additionally, we connect the value property of this <input> to the title property of this instance
of TodoController. We will not implement a title property on the controller so it will retain the
default behavior of proxying all requests⁶⁷ to its model.

A CSS class edit is applied for styling.

In js/controllers/todo_controller.js, add the method acceptChanges that we called from
EditTodoView:

1 // ... additional lines truncated for brevity ...

2 actions: {

3 editTodo: function() {

4 this.set('isEditing', true);

5 },

6 acceptChanges: function() {

7 this.set('isEditing', false);

8

9 if (Ember.isEmpty(this.get('model.title'))) {

10 this.send('removeTodo');

11 } else {

12 this.get('model').save();

13 }

14 },

15 removeTodo: function () {

16 var todo = this.get('model');

17 todo.deleteRecord();

18 todo.save();

19 }

20 },

21 // ... additional lines truncated for brevity ...

This method will set the controller’s isEditing property to false and commit all changes made to
the todo.

Live Preview

Ember.js • TodoMVC⁶⁸

Additional Resources

• Changes in this step in diff format⁶⁹

⁶⁷http://emberjs.com/guides/controllers/#toc_representing-models
⁶⁸http://jsbin.com/USOlAna
⁶⁹https://github.com/emberjs/quickstart-code-sample/commit/a7e2f40da4d75342358acdfcbda7a05ccc90f348

http://emberjs.com/guides/controllers/#toc_representing-models
http://jsbin.com/USOlAna
https://github.com/emberjs/quickstart-code-sample/commit/a7e2f40da4d75342358acdfcbda7a05ccc90f348
http://emberjs.com/guides/controllers/#toc_representing-models
http://jsbin.com/USOlAna
https://github.com/emberjs/quickstart-code-sample/commit/a7e2f40da4d75342358acdfcbda7a05ccc90f348

Getting Started 22

• Controller Guide⁷⁰
• Ember.TextField API documentation⁷¹

Deleting a Model

TodoMVC displays a button for removing todos next to each todo when its is hovered.
Clicking this button will remove the todo and update the display of remaining incomplete todos
and remaining completed todos appropriately.

In index.html update the static <button> element to include an {{action}} Handlebars helper:

1 {{! ... additional lines truncated for brevity ... }}

2 <button {{action "removeTodo"}} class="destroy"></button>

3 {{! ... additional lines truncated for brevity ... }}

This will call the removeTodo action defined in the previous chapter and will delete the todo locally
and then persist this data change.

Because the todo is no longer part of the collection of all todos, its element in the page will
be automatically removed for us. If the deleted todo was incomplete, the count of remaining todos
will be decreased by one and the display of this number will be automatically re-rendered. If the
new count results in an inflection change between “todo” and “todos” this area of the page will be
automatically re-rendered.

Reload your web browser to ensure that there are no errors and the behaviors described above
occurs.

Live Preview

Ember.js • TodoMVC⁷²

Additional Resources

• Changes in this step in diff format⁷³
• action API documentation⁷⁴

⁷⁰http://emberjs.com/guides/controllers
⁷¹http://emberjs.com/api/classes/Ember.TextField.html
⁷²http://jsbin.com/eREkanA
⁷³https://github.com/emberjs/quickstart-code-sample/commit/14e1f129f76bae8f8ea6a73de1e24d810678a8fe
⁷⁴http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_action

http://emberjs.com/guides/controllers
http://emberjs.com/api/classes/Ember.TextField.html
http://jsbin.com/eREkanA
https://github.com/emberjs/quickstart-code-sample/commit/14e1f129f76bae8f8ea6a73de1e24d810678a8fe
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_action
http://emberjs.com/guides/controllers
http://emberjs.com/api/classes/Ember.TextField.html
http://jsbin.com/eREkanA
https://github.com/emberjs/quickstart-code-sample/commit/14e1f129f76bae8f8ea6a73de1e24d810678a8fe
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_action

Getting Started 23

Adding Child Routes

Next we will split our single template into a set of nested templates so we can transition between
different lists of todos in reaction to user interaction.

In index.html move the entire of todos into a new template named todos/index by adding a
new Handlebars template <script> tag inside the <body> of the document:

1 <!--- ... additional lines truncated for brevity ... -->

2 <body>

3 <script type="text/x-handlebars" data-template-name="todos/index">

4 <ul id="todo-list">

5 {{#each itemController="todo"}}

6 <li {{bind-attr class="isCompleted:completed isEditing:editing"}}>

7 {{#if isEditing}}

8 {{edit-todo class="edit" value=title focus-out="acceptChanges" insert-\

9 newline="acceptChanges"}}

10 {{else}}

11 {{input type="checkbox" checked=isCompleted class="toggle"}}

12 <label {{action "editTodo" on="doubleClick"}}>{{title}}</label><button\

13 {{action "removeTodo"}} class="destroy"></button>

14 {{/if}}

15

16 {{/each}}

17

18 </script>

19 <!--- ... additional lines truncated for brevity ... -->

Still within index.html place a Handlebars {{outlet}} helper where the was previously:

1 {{! ... additional lines truncated for brevity ... }}

2 <section id="main">

3 {{outlet}}

4

5 <input type="checkbox" id="toggle-all">

6 </section>

7 {{! ... additional lines truncated for brevity ... }}

The {{outlet}} Handlebars helper designates an area of a template that will dynamically update
as we transition between routes. Our first new child route will fill this area with the list of all todos
in the application.

In js/router.js update the router to change the todosmapping, with an additional empty function
parameter so it can accept child routes, and add this first index route:

Getting Started 24

1 Todos.Router.map(function () {

2 this.resource('todos', { path: '/' }, function () {

3 // additional child routes will go here later

4 });

5 });

6

7 // ... additional lines truncated for brevity ...

8

9 Todos.TodosIndexRoute = Ember.Route.extend({

10 model: function() {

11 return this.modelFor('todos');

12 }

13 });

When the application loads at the url '/' Ember.js will enter the todos route and render the todos
template as before. It will also transition into the todos.index route and fill the {{outlet}} in the
todos template with the todos/index template. The model data for this template is the result of the
modelmethod of TodosIndexRoute, which indicates that the model for this route is the same model
as for the TodosRoute.

This mapping is described in more detail in the Naming Conventions Guide⁷⁵.

Live Preview

Ember.js • TodoMVC⁷⁶

Additional Resources

• Changes in this step in diff format⁷⁷
• Ember Router Guide⁷⁸
• Ember Controller Guide⁷⁹
• outlet API documentation⁸⁰

Transitioning to Show Only Incomplete Todos

Next we’ll update the application so a user can navigate to a url where only todos that are not
complete are displayed.

⁷⁵http://emberjs.com/guides/concepts/naming-conventions
⁷⁶http://jsbin.com/oweNovo
⁷⁷https://github.com/emberjs/quickstart-code-sample/commit/3bab8f1519ffc1ca2d5a12d1de35e4c764c91f05
⁷⁸http://emberjs.com/guides/routing
⁷⁹http://emberjs.com/guides/controllers
⁸⁰http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_outlet

http://emberjs.com/guides/concepts/naming-conventions
http://jsbin.com/oweNovo
https://github.com/emberjs/quickstart-code-sample/commit/3bab8f1519ffc1ca2d5a12d1de35e4c764c91f05
http://emberjs.com/guides/routing
http://emberjs.com/guides/controllers
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_outlet
http://emberjs.com/guides/concepts/naming-conventions
http://jsbin.com/oweNovo
https://github.com/emberjs/quickstart-code-sample/commit/3bab8f1519ffc1ca2d5a12d1de35e4c764c91f05
http://emberjs.com/guides/routing
http://emberjs.com/guides/controllers
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_outlet

Getting Started 25

In index.html convert the <a> tag for ‘Active’ todos into a Handlebars {{link-to}} helper and
remove the active class from the <a> tag for ‘All’:

1 {{! ... additional lines truncated for brevity ... }}

2

3 All

4

5

6 {{#link-to "todos.active" activeClass="selected"}}Active{{/link-to}}

7

8

9 Completed

10

11 {{! ... additional lines truncated for brevity ... }}

In js/router.js update the router to recognize this new path and implement a matching route:

1 Todos.Router.map(function() {

2 this.resource('todos', { path: '/' }, function() {

3 // additional child routes

4 this.route('active');

5 });

6 });

7

8 // ... additional lines truncated for brevity ...

9 Todos.TodosActiveRoute = Ember.Route.extend({

10 model: function(){

11 return this.store.filter('todo', function(todo) {

12 return !todo.get('isCompleted');

13 });

14 },

15 renderTemplate: function(controller) {

16 this.render('todos/index', {controller: controller});

17 }

18 });

The model data for this route is the collection of todos whose isCompleted property is false. When
a todo’s isCompleted property changes this collection will automatically update to add or remove
the todo appropriately.

Normally transitioning into a new route changes the template rendered into the parent {{outlet}},
but in this case we’d like to reuse the existing todos/index template. We can accomplish this by

Getting Started 26

implementing the renderTemplate method and calling render ourselves with the specific template
and controller options.

Reload your web browser to ensure that there are no errors and the behavior described above occurs.

Live Preview

[Ember.js • TodoMVC[(http://jsbin.com/arITiZu)

Additional Resources

• Changes in this step in diff format⁸¹
• link-to API documentation⁸²
• Route#renderTemplate API documentation⁸³
• Route#render API documentation⁸⁴
• Ember Router Guide⁸⁵

Transitioning to Show Only Complete Todos

Next we’ll update the application so a user can navigate to a url where only todos that have already
been completed are displayed.

In index.html convert the <a> tag for ‘Completed’ todos into a Handlebars {{link-to}} helper:

1 {{! ... additional lines truncated for brevity ... }}

2

3 All

4

5

6 {{#link-to "todos.active" activeClass="selected"}}Active{{/link-to}}

7

8

9 {{#link-to "todos.completed" activeClass="selected"}}Completed{{/link-to}}

10

11 {{! ... additional lines truncated for brevity ... }}

In js/router.js update the router to recognize this new path and implement a matching route:

⁸¹https://github.com/emberjs/quickstart-code-sample/commit/2a1d35293a52e40d0125f552a1a8b2c01f759313
⁸²http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to
⁸³http://emberjs.com/api/classes/Ember.Route.html#method_renderTemplate
⁸⁴http://emberjs.com/api/classes/Ember.Route.html#method_render
⁸⁵http://emberjs.com/guides/routing

https://github.com/emberjs/quickstart-code-sample/commit/2a1d35293a52e40d0125f552a1a8b2c01f759313
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to
http://emberjs.com/api/classes/Ember.Route.html#method_renderTemplate
http://emberjs.com/api/classes/Ember.Route.html#method_render
http://emberjs.com/guides/routing
https://github.com/emberjs/quickstart-code-sample/commit/2a1d35293a52e40d0125f552a1a8b2c01f759313
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to
http://emberjs.com/api/classes/Ember.Route.html#method_renderTemplate
http://emberjs.com/api/classes/Ember.Route.html#method_render
http://emberjs.com/guides/routing

Getting Started 27

1 Todos.Router.map(function() {

2 this.resource('todos', { path: '/' }, function() {

3 // additional child routes

4 this.route('active');

5 this.route('completed');

6 });

7 });

8

9 // ... additional lines truncated for brevity ...

10

11 Todos.TodosCompletedRoute = Ember.Route.extend({

12 model: function() {

13 return this.store.filter('todo', function(todo) {

14 return todo.get('isCompleted');

15 });

16 },

17 renderTemplate: function(controller) {

18 this.render('todos/index', {controller: controller});

19 }

20 });

The model data for this route is the collection of todos whose isCompleted property is true. Just
like we recently saw with the similar function for the active todos, changes to a todo’s isCompleted
property will automatically cause this collection to refresh, updating the UI accordingly.

TodosCompletedRoute has a similar purpose to the active todos - to reuse the existing todos/index

template, rather than having to create a new template.

Reload your web browser to ensure that there are no errors and the behavior described above occurs.

Live Preview

Ember.js • TodoMVC⁸⁶

Additional Resources

• Changes in this step in diff format⁸⁷
• link-to API documentation⁸⁸
• Route#renderTemplate API documentation⁸⁹

⁸⁶http://jsbin.com/OzUvuPu
⁸⁷https://github.com/emberjs/quickstart-code-sample/commit/bba939a11197552e3a927bcb3a3adb9430e4f331
⁸⁸http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to
⁸⁹http://emberjs.com/api/classes/Ember.Route.html#method_renderTemplate

http://jsbin.com/OzUvuPu
https://github.com/emberjs/quickstart-code-sample/commit/bba939a11197552e3a927bcb3a3adb9430e4f331
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to
http://emberjs.com/api/classes/Ember.Route.html#method_renderTemplate
http://jsbin.com/OzUvuPu
https://github.com/emberjs/quickstart-code-sample/commit/bba939a11197552e3a927bcb3a3adb9430e4f331
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to
http://emberjs.com/api/classes/Ember.Route.html#method_renderTemplate

Getting Started 28

• Route#render API documentation⁹⁰
• Ember Router Guide⁹¹

Transitioning back to Show All Todos

Next we can update the application to allow navigating back to the list of all todos.

In index.html convert the <a> tag for ‘All’ todos into a Handlebars {{link-to}} helper:

1 {{! ... additional lines truncated for brevity ... }}

2

3 {{#link-to "todos.index" activeClass="selected"}}All{{/link-to}}

4

5

6 {{#link-to "todos.active" activeClass="selected"}}Active{{/link-to}}

7

8

9 {{#link-to "todos.completed" activeClass="selected"}}Completed{{/link-to}}

10

11 {{! ... additional lines truncated for brevity ... }}

Reload your web browser to ensure that there are no errors. You should be able to navigate between
urls for all, active, and completed todos.

Live Preview

Ember.js • TodoMVC⁹²

Additional Resources

• Changes in this step in diff format⁹³
• link-to API documentation⁹⁴

⁹⁰http://emberjs.com/api/classes/Ember.Route.html#method_render
⁹¹http://emberjs.com/guides/routing
⁹²http://jsbin.com/uYuGA
⁹³https://github.com/emberjs/quickstart-code-sample/commit/843ff914873081560e4ba97df0237b8595b6ae51
⁹⁴http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to

http://emberjs.com/api/classes/Ember.Route.html#method_render
http://emberjs.com/guides/routing
http://jsbin.com/uYuGA
https://github.com/emberjs/quickstart-code-sample/commit/843ff914873081560e4ba97df0237b8595b6ae51
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to
http://emberjs.com/api/classes/Ember.Route.html#method_render
http://emberjs.com/guides/routing
http://jsbin.com/uYuGA
https://github.com/emberjs/quickstart-code-sample/commit/843ff914873081560e4ba97df0237b8595b6ae51
http://emberjs.com/api/classes/Ember.Handlebars.helpers.html#method_link-to

Getting Started 29

Displaying a Button to Remove All Completed Todos

TodoMVC allows users to delete all completed todos at once by clicking a button. This button is
visible only when there are any completed todos, displays the number of completed todos, and
removes all completed todos from the application when clicked.

In this step, we’ll implement that behavior. In index.html update the static <button> for clearing
all completed todos:

1 {{! ... additional lines truncated for brevity ... }}

2 {{#if hasCompleted}}

3 <button id="clear-completed" {{action "clearCompleted"}}>

4 Clear completed ({{completed}})

5 </button>

6 {{/if}}

7 {{! ... additional lines truncated for brevity ... }}

In js/controllers/todos_controller.js implement the matching properties and a method that
will clear completed todos and persist these changes when the button is clicked:

1 // ... additional lines truncated for brevity ...

2 actions: {

3 clearCompleted: function() {

4 var completed = this.filterBy('isCompleted', true);

5 completed.invoke('deleteRecord');

6 completed.invoke('save');

7 },

8 // ... additional lines truncated for brevity ...

9 },

10 hasCompleted: function() {

11 return this.get('completed') > 0;

12 }.property('completed'),

13

14 completed: function() {

15 return this.filterBy('isCompleted', true).get('length');

16 }.property('@each.isCompleted'),

17 // ... additional lines truncated for brevity ...

The completed and clearCompleted methods both invoke the filterBy method, which is part of
the ArrayController⁹⁵ API and returns an instance of EmberArray⁹⁶ which contains only the items

⁹⁵http://emberjs.com/api/classes/Ember.ArrayController.html#method_filterProperty
⁹⁶http://emberjs.com/api/classes/Ember.Array.html

http://emberjs.com/api/classes/Ember.ArrayController.html#method_filterProperty
http://emberjs.com/api/classes/Ember.Array.html
http://emberjs.com/api/classes/Ember.ArrayController.html#method_filterProperty
http://emberjs.com/api/classes/Ember.Array.html

Getting Started 30

for which the callback returns true. The clearCompleted method also invokes the invoke method
which is part of the EmberArray⁹⁷ API. invoke will execute a method on each object in the Array if
the method exists on that object.

Reload your web browser to ensure that there are no errors and the behavior described above occurs.

Live Preview

Ember.js • TodoMVC⁹⁸

Additional Resources

• Changes in this step in diff format⁹⁹
• Handlebars Conditionals Guide¹⁰⁰
• Enumerables Guide¹⁰¹

Indicating When All Todos Are Complete

Next we’ll update our template to indicate when all todos have been completed. In index.html

replace the static checkbox <input> with an {{input}}:

1 {{! ... additional lines truncated for brevity ... }}

2 <section id="main">

3 {{outlet}}

4 {{input type="checkbox" id="toggle-all" checked=allAreDone}}

5 </section>

6 {{! ... additional lines truncated for brevity ... }}

This checkbox will be checked when the controller property allAreDone is true and unchecked
when the property allAreDone is false.

In js/controllers/todos_controller.js implement the matching allAreDone property:

⁹⁷http://emberjs.com/api/classes/Ember.Array.html#method_invoke
⁹⁸http://jsbin.com/ULovoJI
⁹⁹https://github.com/emberjs/quickstart-code-sample/commit/1da450a8d693f083873a086d0d21e031ee3c129e
¹⁰⁰http://emberjs.com/guides/templates/conditionals
¹⁰¹http://emberjs.com/guides/enumerables

http://emberjs.com/api/classes/Ember.Array.html#method_invoke
http://jsbin.com/ULovoJI
https://github.com/emberjs/quickstart-code-sample/commit/1da450a8d693f083873a086d0d21e031ee3c129e
http://emberjs.com/guides/templates/conditionals
http://emberjs.com/guides/enumerables
http://emberjs.com/api/classes/Ember.Array.html#method_invoke
http://jsbin.com/ULovoJI
https://github.com/emberjs/quickstart-code-sample/commit/1da450a8d693f083873a086d0d21e031ee3c129e
http://emberjs.com/guides/templates/conditionals
http://emberjs.com/guides/enumerables

Getting Started 31

1 // ... additional lines truncated for brevity ...

2 allAreDone: function(key, value) {

3 return !!this.get('length') && this.isEvery('isCompleted');

4 }.property('@each.isCompleted')

5 // ... additional lines truncated for brevity ...

This property will be true if the controller has any todos and every todo’s isCompleted property
is true. If the isCompleted property of any todo changes, this property will be recomputed. If the
return value has changed, sections of the template that need to update will be automatically updated
for us.

Reload your web browser to ensure that there are no errors and the behavior described above occurs.

Live Preview

Ember.js • TodoMVC¹⁰²

Additional Resources

• Changes in this step in diff format¹⁰³
• Ember.Checkbox API documentation¹⁰⁴

Toggling All Todos Between Complete and Incomplete

TodoMVC allows users to toggle all existing todos into either a complete or incomplete state. It uses
the same checkbox that becomes checked when all todos are completed and unchecked when one
or more todos remain incomplete.

To implement this behavior update the allAreDone property in js/controllers/todos_controller.js
to handle both getting and setting behavior:

¹⁰²http://jsbin.com/IcItARE
¹⁰³https://github.com/emberjs/quickstart-code-sample/commit/9bf8a430bc4afb06f31be55f63f1d9806e6ab01c
¹⁰⁴http://emberjs.com/api/classes/Ember.Checkbox.html

http://jsbin.com/IcItARE
https://github.com/emberjs/quickstart-code-sample/commit/9bf8a430bc4afb06f31be55f63f1d9806e6ab01c
http://emberjs.com/api/classes/Ember.Checkbox.html
http://jsbin.com/IcItARE
https://github.com/emberjs/quickstart-code-sample/commit/9bf8a430bc4afb06f31be55f63f1d9806e6ab01c
http://emberjs.com/api/classes/Ember.Checkbox.html

Getting Started 32

1 // ... additional lines truncated for brevity ...

2 allAreDone: function(key, value) {

3 if (value === undefined) {

4 return !!this.get('length') && this.isEvery('isCompleted', true);

5 } else {

6 this.setEach('isCompleted', value);

7 this.invoke('save');

8 return value;

9 }

10 }.property('@each.isCompleted')

11 // ... additional lines truncated for brevity ...

If no value argument is passed this property is being used to populate the current value of the
checkbox. If a value is passed it indicates the checkbox was used by a user and we should set the
isCompleted property of each todo to this new value.

The count of remaining todos and completed todos used elsewhere in the template automatically
re-render for us if necessary.

Reload your web browser to ensure that there are no errors and the behavior described above occurs.

Live Preview

Ember.js • TodoMVC¹⁰⁵

Additional Resources

• Changes in this step in diff format¹⁰⁶
• Ember.Checkbox API documentation¹⁰⁷
• Computed Properties Guide¹⁰⁸

Replacing the Fixture Adapter with Another Adapter

Finally we’ll replace our fixture data with real persistence so todos will remain between application
loads by replacing the fixture adapter with a localstorage-aware adapter instead.

Change js/application.js to:

¹⁰⁵http://jsbin.com/AViZATE
¹⁰⁶https://github.com/emberjs/quickstart-code-sample/commit/47b289bb9f669edaa39abd971f5e884142988663
¹⁰⁷http://emberjs.com/api/classes/Ember.Checkbox.html
¹⁰⁸http://emberjs.com/guides/object-model/computed-properties/

http://jsbin.com/AViZATE
https://github.com/emberjs/quickstart-code-sample/commit/47b289bb9f669edaa39abd971f5e884142988663
http://emberjs.com/api/classes/Ember.Checkbox.html
http://emberjs.com/guides/object-model/computed-properties/
http://jsbin.com/AViZATE
https://github.com/emberjs/quickstart-code-sample/commit/47b289bb9f669edaa39abd971f5e884142988663
http://emberjs.com/api/classes/Ember.Checkbox.html
http://emberjs.com/guides/object-model/computed-properties/

Getting Started 33

1 window.Todos = Ember.Application.create();

2

3 Todos.ApplicationAdapter = DS.LSAdapter.extend({

4 namespace: 'todos-emberjs'

5 });

The local storage adapter, written by Ryan Florence, can be downloaded from its source¹⁰⁹. Add it
to your project as js/libs/localstorage_adapter.js. You may place this file anywhere you like
(even just putting all code into the same file), but this guide will assume you have created the file
and named it as indicated.

In index.html include js/libs/localstorage_adapter.js as a dependency:

1 <!--- ... additional lines truncated for brevity ... -->

2 <script src="js/libs/ember-data.js"></script>

3 <script src="js/libs/localstorage_adapter.js"></script>

4 <script src="js/application.js"></script>

5 <!--- ... additional lines truncated for brevity ... -->

Reload your application. Todos you manage will now persist after the application has been closed.

Live Preview

Ember.js • TodoMVC¹¹⁰

Additional Resources

• Changes in this step in diff format¹¹¹
• LocalStorage Adapter on GitHub¹¹²

¹⁰⁹https://raw.github.com/rpflorence/ember-localstorage-adapter/master/localstorage_adapter.js
¹¹⁰http://jsbin.com/aZIXaYo
¹¹¹https://github.com/emberjs/quickstart-code-sample/commit/81801d87da42d0c83685ff946c46de68589ce38f
¹¹²https://github.com/rpflorence/ember-localstorage-adapter

https://raw.github.com/rpflorence/ember-localstorage-adapter/master/localstorage_adapter.js
http://jsbin.com/aZIXaYo
https://github.com/emberjs/quickstart-code-sample/commit/81801d87da42d0c83685ff946c46de68589ce38f
https://github.com/rpflorence/ember-localstorage-adapter
https://raw.github.com/rpflorence/ember-localstorage-adapter/master/localstorage_adapter.js
http://jsbin.com/aZIXaYo
https://github.com/emberjs/quickstart-code-sample/commit/81801d87da42d0c83685ff946c46de68589ce38f
https://github.com/rpflorence/ember-localstorage-adapter

Getting Ember
Ember Builds

The Ember Release Management Team maintains a variety of ways to get Ember and Ember Data
builds.

Channels

The latest Release¹¹³, Beta¹¹⁴, and Canary¹¹⁵ builds of Ember and Ember data can be found here¹¹⁶.
For each channel a development, minified, and production version is available. For more on the
different channels read the Post 1.0 Release Cycle¹¹⁷ blog post.

Tagged Releases

Past release and beta builds of Ember and Ember Data are available at Tagged Releases¹¹⁸. These
builds can be useful to track down regressions in your application, but it is recommended to use the
latest stable release in production.

Bower

Bower is a package manager for the web. Bower makes it easy to manage dependencies in your
application including Ember and Ember Data. To learn more about Bower visit http://bower.io/¹¹⁹.

Adding Ember to your application with Bower is easy; simply run bower install ember --save.
For Ember Data, run bower install ember-data --save. You can also add ember or ember-data to
your bower.json file as follows.

¹¹³http://emberjs.com/builds#/release
¹¹⁴http://emberjs.com/builds#/beta
¹¹⁵http://emberjs.com/builds#/canary
¹¹⁶http://emberjs.com/builds
¹¹⁷http://emberjs.com/blog/2013/09/06/new-ember-release-process.html
¹¹⁸http://emberjs.com/builds#/tagged
¹¹⁹http://bower.io/

http://emberjs.com/builds#/release
http://emberjs.com/builds#/beta
http://emberjs.com/builds#/canary
http://emberjs.com/builds
http://emberjs.com/blog/2013/09/06/new-ember-release-process.html
http://emberjs.com/builds#/tagged
http://bower.io/
http://emberjs.com/builds#/release
http://emberjs.com/builds#/beta
http://emberjs.com/builds#/canary
http://emberjs.com/builds
http://emberjs.com/blog/2013/09/06/new-ember-release-process.html
http://emberjs.com/builds#/tagged
http://bower.io/

Getting Ember 35

1 {

2 "name": "your-app",

3 "dependencies": {

4 "ember": "~1.6",

5 "ember-data": "~1.0.0-beta.8"

6 }

7 }

RubyGems

If your application uses a Ruby based build system, you can use the ember-source¹²⁰ and ember-
data-source¹²¹ RubyGems to access ember and ember data sources from Ruby.

If your application is built in Rails, the ember-rails¹²² RubyGem makes it easy to integrate Ember
into your Ruby on Rails application.

¹²⁰http://rubygems.org/gems/ember-source
¹²¹http://rubygems.org/gems/ember-data-source
¹²²http://rubygems.org/gems/ember-rails

http://rubygems.org/gems/ember-source
http://rubygems.org/gems/ember-data-source
http://rubygems.org/gems/ember-data-source
http://rubygems.org/gems/ember-rails
http://rubygems.org/gems/ember-source
http://rubygems.org/gems/ember-data-source
http://rubygems.org/gems/ember-rails

Concepts
Core Concept

To get started with Ember.js, there are a few core concepts you should understand.

Ember.js is designed to help developers build ambitiously large web applications that are competitive
with native apps. Doing so requires both new tools and a new vocabulary of concepts. We’ve spent
a lot of time borrowing ideas pioneered by native application frameworks like Cocoa and Smalltalk.

However, it’s important to rememberwhatmakes theweb special. Many people think that something
is a web application because it uses technologies like HTML, CSS and JavaScript. In reality, these
are just implementation details.

Instead, the web derives its power from the ability to bookmark and share URLs. URLs are
the key feature that give web applications superior shareability and collaboration. Today, most
JavaScript frameworks treat the URL as an afterthought, instead of the primary reason for the web’s
success.

Ember.js, therefore, marries the tools and concepts of native GUI frameworks with support for the
feature that makes the web so powerful: the URL.

Concepts

Templates

A template, written in the Handlebars templating language, describes the user interface of your
application. Each template is backed by a model, and the template automatically updates itself if the
model changes.

In addition to plain HTML, templates can contain:

• Expressions, like {{firstName}}, which take information from the template’s model and put
it into HTML.

• Outlets, which are placeholders for other templates. As users move around your app, different
templates can be plugged into the outlet by the router. You can put outlets into your template
using the {{outlet}} helper.

• Components, custom HTML elements that you can use to clean up repetitive templates or
create reusable controls.

Concepts 37

Router

The router translates a URL into a series of nested templates, each backed by a model. As the
templates or models being shown to the user change, Ember automatically keeps the URL in the
browser’s address bar up-to-date.

This means that, at any point, users are able to share the URL of your app. When someone clicks the
link, they reliably see the same content as the original user.

Components

A component is a custom HTML tag whose behavior you implement using JavaScript and whose
appearance you describe using Handlebars templates. They allow you to create reusable controls
that can simplify your application’s templates.

Models

Amodel is an object that stores persistent state. Templates are responsible for displaying the model
to the user by turning it into HTML. In many applications, models are loaded via an HTTP JSON
API, although Ember is agnostic to the backend that you choose.

Route

A route is an object that tells the template which model it should display.

Controllers

A controller is an object that stores application state. A template can optionally have a controller
in addition to a model, and can retrieve properties from both.

These are the core concepts you’ll need to understand as you develop your Ember.js app. They are
designed to scale up in complexity, so that adding new functionality doesn’t force you to go back
and refactor major parts of your app.

Now that you understand the roles of these objects, you’re equipped to dive deep into Ember.js and
learn the details of how each of these individual pieces work.

Concepts 38

Naming Conventions

Ember.js uses naming conventions to wire up your objects without a lot of boilerplate. You will want
to use these conventional names for your routes, controllers and templates.

You can usually guess the names, but this guide outlines, in one place, all of the naming conventions.
In the following examples ‘App’ is a name that we chose to namespace or represent our Ember
application when it was created, but you can choose any name you want for your application. We
will show you later how to create an Ember application, but for now we will focus on conventions.

The Application

When your application boots, Ember will look for these objects:

• App.ApplicationRoute

• App.ApplicationController

• the application template

Ember.js will render the application template as themain template. If App.ApplicationController
is provided, Ember.js will set an instance of App.ApplicationController as the controller for the
template. This means that the template will get its properties from the controller.

If your app provides an App.ApplicationRoute, Ember.js will invoke the¹²³ router’s¹²⁴ hooks¹²⁵ first,
before rendering the application template. Hooks are implemented as methods and provide you
access points within an Ember object’s lifecycle to intercept and execute code to modify the default
behavior at these points to meet your needs. Ember provides several hooks for you to utilize for
various purposes (e.g. model, setupController, etc). In the example below App.ApplicationRoute,
which is a Ember.Route object, implements the setupController hook.

Here’s a simple example that uses a route, controller, and template:

¹²³http://emberjs.com/guides/routing/specifying-a-routes-model
¹²⁴http://emberjs.com/guides/routing/setting-up-a-controller
¹²⁵http://emberjs.com/guides/routing/rendering-a-template

http://emberjs.com/guides/routing/specifying-a-routes-model
http://emberjs.com/guides/routing/setting-up-a-controller
http://emberjs.com/guides/routing/rendering-a-template
http://emberjs.com/guides/routing/specifying-a-routes-model
http://emberjs.com/guides/routing/setting-up-a-controller
http://emberjs.com/guides/routing/rendering-a-template

Concepts 39

1 App.ApplicationRoute = Ember.Route.extend({

2 setupController: function(controller) {

3 // `controller` is the instance of ApplicationController

4 controller.set('title', "Hello world!");

5 }

6 });

7

8 App.ApplicationController = Ember.Controller.extend({

9 appName: 'My First Example'

10 });

1 <!-- application template -->

2 <h1>{{appName}}</h1>

3

4 <h2>{{title}}</h2>

In Ember.js applications, you will always specify your controllers as classes, and the framework is
responsible for instantiating them and providing them to your templates.

This makes it super-simple to test your controllers, and ensures that your entire application shares
a single instance of each controller.

Simple Routes

Each of your routes will have a controller, and a template with the same name as the route.

Let’s start with a simple router:

1 App.Router.map(function() {

2 this.route('favorites');

3 });

If your user navigates to /favorites, Ember.js will look for these objects:

• App.FavoritesRoute

• App.FavoritesController

• the favorites template

Ember.js will render the favorites template into the {{outlet}} in the application template. It
will set an instance of the App.FavoritesController as the controller for the template.

Concepts 40

If your app provides an App.FavoritesRoute, the framework will invoke it before rendering the
template. Yes, this is a bit repetitive.

For a route like App.FavoritesRoute, you will probably implement the model hook to specify what
model your controller will present to the template.

Here’s an example:

1 App.FavoritesRoute = Ember.Route.extend({

2 model: function() {

3 // the model is an Array of all of the posts

4 return this.store.find('post');

5 }

6 });

In this example, we didn’t provide a FavoritesController. Because the model is an Array, Ember.js
will automatically supply an instance of Ember.ArrayController, which will present the backing
Array as its model.

You can treat the ArrayController as if it was the model itself. This has two major benefits:

• You can replace the controller’s model at any time without having to directly notify the view
of the change.

• The controller can provide additional computed properties or view-specific state that do not
belong in the model layer. This allows a clean separation of concerns between the view, the
controller and the model.

The template can iterate over the elements of the controller:

1

2 {{#each post}}

3 {{title}}

4 {{/each}}

5

Dynamic Segments

If a route uses a dynamic segment, the route’s model will be based on the value of that segment
provided by the user.

Consider this router definition:

Concepts 41

1 App.Router.map(function() {

2 this.resource('post', { path: '/posts/:post_id' });

3 });

In this case, the route’s name is post, so Ember.js will look for these objects:

• App.PostRoute

• App.PostController

• the post template

Your route handler’s model hook converts the dynamic :post_id parameter into a model. The
serialize hook converts a model object back into the URL parameters for this route (for example,
when generating a link for a model object).

1 App.PostRoute = Ember.Route.extend({

2 model: function(params) {

3 return this.store.find('post', params.post_id);

4 },

5

6 serialize: function(post) {

7 return { post_id: post.get('id') };

8 }

9 });

Because this pattern is so common, it is the default for route handlers.

• If your dynamic segment ends in _id, the default model hook will convert the first part into
a model class on the application’s namespace (post becomes App.Post). It will then call find
on that class with the value of the dynamic segment.

• The default serialize hook will pull the dynamic segment with the id property of the model
object.

Route, Controller and Template Defaults

If you don’t specify a route handler for the post route (App.PostRoute), Ember.js will still render
the post template with the app’s instance of App.PostController.

If you don’t specify the controller (App.PostController), Ember will automatically make one for
you based on the return value of the route’s model hook. If the model is an Array, you get an
ArrayController. Otherwise, you get an ObjectController.

If you don’t specify a post template, Ember.js won’t render anything!

Nesting

You can nest routes under a resource.

Concepts 42

1 App.Router.map(function() {

2 this.resource('posts', function() { // the `posts` route

3 this.route('favorites'); // the `posts.favorites` route

4 this.resource('post'); // the `post` route

5 });

6 });

A resource is the beginning of a route, controller, or template name. Even though the post resource
is nested, its route is named App.PostRoute, its controller is named App.PostController and its
template is post.

When you nest a route inside a resource, the route name is added to the resource name, after a ..

Here are the naming conventions for each of the routes defined in this router:

The rule of thumb is to use resources for nouns, and routes for adjectives (favorites) or verbs
(edit). This ensures that nesting does not create ridiculously long names, but avoids collisions with
common adjectives and verbs.

The Index Route

At every level of nesting (including the top level), Ember.js automatically provides a route for the /
path named index.

For example, if you write a simple router like this:

1 App.Router.map(function() {

2 this.route('favorites');

3 });

It is the equivalent of:

1 App.Router.map(function() {

2 this.route('index', { path: '/' });

3 this.route('favorites');

4 });

If the user visits /, Ember.js will look for these objects:

• App.IndexRoute

• App.IndexController

• the index template

The index template will be rendered into the {{outlet}} in the application template. If the user
navigates to /favorites, Ember.js will replace the index template with the favorites template.

A nested router like this:

Concepts 43

1 App.Router.map(function() {

2 this.resource('posts', function() {

3 this.route('favorites');

4 });

5 });

Is the equivalent of:

1 App.Router.map(function() {

2 this.route('index', { path: '/' });

3 this.resource('posts', function() {

4 this.route('index', { path: '/' });

5 this.route('favorites');

6 });

7 });

If the user navigates to /posts, the current route will be posts.index. Ember.js will look for objects
named:

• App.PostsIndexRoute

• App.PostsIndexController

• The posts/index template

First, the posts template will be rendered into the {{outlet}} in the application template. Then,
the posts/index template will be rendered into the {{outlet}} in the posts template.

If the user then navigates to /posts/favorites, Ember.js will replace the {{outlet}} in the posts
template with the posts/favorites template.

The Object Model
Classes and Instances

To define a new Ember class, call the extend() method on Ember.Object:

1 App.Person = Ember.Object.extend({

2 say: function(thing) {

3 alert(thing);

4 }

5 });

This defines a new App.Person class with a say() method.

You can also create a subclass from any existing class by calling its extend() method. For example,
you might want to create a subclass of Ember’s built-in Ember.View class:

1 App.PersonView = Ember.View.extend({

2 tagName: 'li',

3 classNameBindings: ['isAdministrator']

4 });

When defining a subclass, you can override methods but still access the implementation of your
parent class by calling the special _super() method:

1 App.Person = Ember.Object.extend({

2 say: function(thing) {

3 var name = this.get('name');

4 alert(name + " says: " + thing);

5 }

6 });

7

8 App.Soldier = App.Person.extend({

9 say: function(thing) {

10 this._super(thing + ", sir!");

11 }

12 });

13

The Object Model 45

14 var yehuda = App.Soldier.create({

15 name: "Yehuda Katz"

16 });

17

18 yehuda.say("Yes"); // alerts "Yehuda Katz says: Yes, sir!"

Creating Instances

Once you have defined a class, you can create new instances of that class by calling its create()
method. Anymethods, properties and computed properties you defined on the class will be available
to instances:

1 var person = App.Person.create();

2 person.say("Hello"); // alerts " says: Hello"

When creating an instance, you can initialize the value of its properties by passing an optional hash
to the create() method:

1 App.Person = Ember.Object.extend({

2 helloWorld: function() {

3 alert("Hi, my name is " + this.get('name'));

4 }

5 });

6

7 var tom = App.Person.create({

8 name: "Tom Dale"

9 });

10

11 tom.helloWorld(); // alerts "Hi, my name is Tom Dale"

For performance reasons, note that you cannot redefine an instance’s computed properties or
methods when calling create(), nor can you define new ones. You should only set simple properties
when calling create(). If you need to define or redefine methods or computed properties, create a
new subclass and instantiate that.

By convention, properties or variables that hold classes are PascalCased, while instances are not.
So, for example, the variable App.Person would point to a class, while person would point to an
instance (usually of the App.Person class). You should stick to these naming conventions in your
Ember applications.

Initializing Instances

When a new instance is created, its init method is invoked automatically. This is the ideal place to
do setup required on new instances:

The Object Model 46

1 App.Person = Ember.Object.extend({

2 init: function() {

3 var name = this.get('name');

4 alert(name + ", reporting for duty!");

5 }

6 });

7

8 App.Person.create({

9 name: "Stefan Penner"

10 });

11

12 // alerts "Stefan Penner, reporting for duty!"

If you are subclassing a framework class, like Ember.View or Ember.ArrayController, and you
override the initmethod, make sure you call this._super()! If you don’t, the systemmay not have
an opportunity to do important setup work, and you’ll see strange behavior in your application.

When accessing the properties of an object, use the get and set accessor methods:

1 var person = App.Person.create();

2

3 var name = person.get('name');

4 person.set('name', "Tobias Fünke");

Make sure to use these accessor methods; otherwise, computed properties won’t recalculate,
observers won’t fire, and templates won’t update.

Computed Properties

What are Computed Properties?

In a nutshell, computed properties let you declare functions as properties. You create one by defining
a computed property as a function, which Ember will automatically call when you ask for the
property. You can then use it the same way you would any normal, static property.

It’s super handy for taking one or more normal properties and transforming or manipulating their
data to create a new value.

Computed properties in action

We’ll start with a simple example:

The Object Model 47

1 App.Person = Ember.Object.extend({

2 // these will be supplied by `create`

3 firstName: null,

4 lastName: null,

5

6 fullName: function() {

7 return this.get('firstName') + ' ' + this.get('lastName');

8 }.property('firstName', 'lastName')

9 });

10

11 var ironMan = App.Person.create({

12 firstName: "Tony",

13 lastName: "Stark"

14 });

15

16 ironMan.get('fullName'); // "Tony Stark"

Notice that the fullName function calls property. This declares the function to be a computed
property, and the arguments tell Ember that it depends on the firstName and lastName attributes.

Whenever you access the fullName property, this function gets called, and it returns the value of the
function, which simply calls firstName + lastName.

Alternate invocation At this point, you might be wondering how you are able to call the
.property function on a function. This is possible because Ember extends the function prototype.
More information about extending native prototypes is available in the disabling prototype exten-
sions guide¹²⁶. If you’d like to replicate the declaration from above without using these extensions
you could do so with the following:

1 fullName: Ember.computed('firstName', 'lastName', function() {

2 return this.get('firstName') + ' ' + this.get('lastName');

3 })

Chaining computed properties

You can use computed properties as values to create new computed properties. Let’s add a
description computed property to the previous example, and use the existing fullName property
and add in some other properties:

¹²⁶http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/

http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/
http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/
http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/

The Object Model 48

1 App.Person = Ember.Object.extend({

2 firstName: null,

3 lastName: null,

4 age: null,

5 country: null,

6

7 fullName: function() {

8 return this.get('firstName') + ' ' + this.get('lastName');

9 }.property('firstName', 'lastName'),

10

11 description: function() {

12 return this.get('fullName') + '; Age: ' + this.get('age') + '; Country: ' + \

13 this.get('country');

14 }.property('fullName', 'age', 'country')

15 });

16

17 var captainAmerica = App.Person.create({

18 firstName: 'Steve',

19 lastName: 'Rogers',

20 age: 80,

21 country: 'USA'

22 });

23

24 captainAmerica.get('description'); // "Steve Rogers; Age: 80; Country: USA"

Dynamic updating

Computed properties, by default, observe any changes made to the properties they depend on and
are dynamically updated when they’re called. Let’s use computed properties to dynamically update.

1 captainAmerica.set('firstName', 'William');

2

3 captainAmerica.get('description'); // "William Rogers; Age: 80; Country: USA"

So this change to firstName was observed by fullName computed property, which was itself
observed by the description property.

Setting any dependent property will propagate changes through any computed properties that
depend on them, all the way down the chain of computed properties you’ve created.

Setting Computed Properties

You can also define what Ember should do when setting a computed property. If you try to set a
computed property, it will be invoked with the key (property name), the value you want to set it to,
and the previous value.

The Object Model 49

1 App.Person = Ember.Object.extend({

2 firstName: null,

3 lastName: null,

4

5 fullName: function(key, value, previousValue) {

6 // setter

7 if (arguments.length > 1) {

8 var nameParts = value.split(/\s+/);

9 this.set('firstName', nameParts[0]);

10 this.set('lastName', nameParts[1]);

11 }

12

13 // getter

14 return this.get('firstName') + ' ' + this.get('lastName');

15 }.property('firstName', 'lastName')

16 });

17

18

19 var captainAmerica = App.Person.create();

20 captainAmerica.set('fullName', "William Burnside");

21 captainAmerica.get('firstName'); // William

22 captainAmerica.get('lastName'); // Burnside

Ember will call the computed property for both setters and getters, so if you want to use a computed
property as a setter, you’ll need to check the number of arguments to determine whether it is being
called as a getter or a setter. Note that if a value is returned from the setter, it will be cached as the
property’s value.

Computed Properties and Aggregate Data with @each

Often, you may have a computed property that relies on all of the items in an array to determine its
value. For example, you may want to count all of the todo items in a controller to determine how
many of them are completed.

Here’s what that computed property might look like:

The Object Model 50

1 App.TodosController = Ember.Controller.extend({

2 todos: [

3 Ember.Object.create({ isDone: true }),

4 Ember.Object.create({ isDone: false }),

5 Ember.Object.create({ isDone: true })

6],

7

8 remaining: function() {

9 var todos = this.get('todos');

10 return todos.filterBy('isDone', false).get('length');

11 }.property('todos.@each.isDone')

12 });

Note here that the dependent key (todos.@each.isDone) contains the special key @each. This
instructs Ember.js to update bindings and fire observers for this computed property when one of
the following four events occurs:

1. The isDone property of any of the objects in the todos array changes.
2. An item is added to the todos array.
3. An item is removed from the todos array.
4. The todos property of the controller is changed to a different array.

In the example above, the remaining count is 1:

1 App.todosController = App.TodosController.create();

2 App.todosController.get('remaining');

3 // 1

If we change the todo’s isDone property, the remaining property is updated automatically:

1 var todos = App.todosController.get('todos');

2 var todo = todos.objectAt(1);

3 todo.set('isDone', true);

4

5 App.todosController.get('remaining');

6 // 0

7

8 todo = Ember.Object.create({ isDone: false });

9 todos.pushObject(todo);

10

11 App.todosController.get('remaining');

12 // 1

The Object Model 51

Note that @each onlyworks one level deep. You cannot use nested forms like todos.@each.owner.name
or todos.@each.owner.@each.name.

Observers

Ember supports observing any property, including computed properties. You can set up an observer
on an object by using the observes method on a function:

1 Person = Ember.Object.extend({

2 // these will be supplied by `create`

3 firstName: null,

4 lastName: null,

5

6 fullName: function() {

7 var firstName = this.get('firstName');

8 var lastName = this.get('lastName');

9

10 return firstName + ' ' + lastName;

11 }.property('firstName', 'lastName'),

12

13 fullNameChanged: function() {

14 // deal with the change

15 }.observes('fullName').on('init')

16 });

17

18 var person = Person.create({

19 firstName: 'Yehuda',

20 lastName: 'Katz'

21 });

22

23 person.set('firstName', 'Brohuda'); // observer will fire

Because the fullName computed property depends on firstName, updating firstName will fire
observers on fullName as well.

Observers and asynchrony

Observers in Ember are currently synchronous. This means that they will fire as soon as one of the
properties they observe changes. Because of this, it is easy to introduce bugs where properties are
not yet synchronized:

The Object Model 52

1 Person.reopen({

2 lastNameChanged: function() {

3 // The observer depends on lastName and so does fullName. Because observers

4 // are synchronous, when this function is called the value of fullName is

5 // not updated yet so this will log the old value of fullName

6 console.log(this.get('fullName'));

7 }.observes('lastName')

8 });

This synchronous behaviour can also lead to observers being fired multiple times when observing
multiple properties:

1 Person.reopen({

2 partOfNameChanged: function() {

3 // Because both firstName and lastName were set, this observer will fire twi\

4 ce.

5 }.observes('firstName', 'lastName')

6 });

7

8 person.set('firstName', 'John');

9 person.set('lastName', 'Smith');

To get around these problems, you should make use of Ember.run.once. This will ensure that any
processing you need to do only happens once, and happens in the next run loop once all bindings
are synchronized:

1 Person.reopen({

2 partOfNameChanged: function() {

3 Ember.run.once(this, 'processFullName');

4 }.observes('firstName', 'lastName'),

5

6 processFullName: function() {

7 // This will only fire once if you set two properties at the same time, and

8 // will also happen in the next run loop once all properties are synchronized

9 console.log(this.get('fullName'));

10 }

11 });

12

13 person.set('firstName', 'John');

14 person.set('lastName', 'Smith');

The Object Model 53

Observers and object initialization

Observers never fire until after the initialization of an object is complete.

If you need an observer to fire as part of the initialization process, you cannot rely on the side effect
of set. Instead, specify that the observer should also run after init by using .on('init'):

1 App.Person = Ember.Object.extend({

2 init: function() {

3 this.set('salutation', "Mr/Ms");

4 },

5

6 salutationDidChange: function() {

7 // some side effect of salutation changing

8 }.observes('salutation').on('init')

9 });

Unconsumed Computed Properties Do Not Trigger Observers

If you never get a computed property, its observers will not fire even if its dependent keys change.
You can think of the value changing from one unknown value to another.

This doesn’t usually affect application code because computed properties are almost always observed
at the same time as they are fetched. For example, you get the value of a computed property, put it
in DOM (or draw it with D3), and then observe it so you can update the DOM once the property
changes.

If you need to observe a computed property but aren’t currently retrieving it, just get it in your init
method.

Without prototype extensions

You can define inline observers by using the Ember.observermethod if you are using Ember without
prototype extensions:

1 Person.reopen({

2 fullNameChanged: Ember.observer('fullName', function() {

3 // deal with the change

4 })

5 });

Outside of class definitions

You can also add observers to an object outside of a class definition using addObserver:

The Object Model 54

1 person.addObserver('fullName', function() {

2 // deal with the change

3 });

Bindings

Abinding creates a link between two properties such that when one changes, the other one is updated
to the new value automatically. Bindings can connect properties on the same object, or across two
different objects. Unlike most other frameworks that include some sort of binding implementation,
bindings in Ember.js can be used with any object, not just between views and models.

The easiest way to create a two-way binding is to use a computed alias, that specifies the path to
another object.

1 wife = Ember.Object.create({

2 householdIncome: 80000

3 });

4

5 husband = Ember.Object.create({

6 wife: wife,

7 householdIncome: Ember.computed.alias('wife.householdIncome')

8 });

9

10 husband.get('householdIncome'); // 80000

11

12 // Someone gets raise.

13 husband.set('householdIncome', 90000);

14 wife.get('householdIncome'); // 90000

Note that bindings don’t update immediately. Ember waits until all of your application code has
finished running before synchronizing changes, so you can change a bound property as many times
as you’d like without worrying about the overhead of syncing bindings when values are transient.

One-Way Bindings

A one-way binding only propagates changes in one direction. Often, one-way bindings are just
a performance optimization and you can safely use a two-way binding (as, of course, two-way
bindings are de facto one-way bindings if you only ever change one side). Sometimes one-way
bindings are useful to achieve specific behaviour such as a default that is the same as another
property but can be overriden (e.g. a shipping address that starts the same as a billing address but
can later be changed)

The Object Model 55

1 user = Ember.Object.create({

2 fullName: "Kara Gates"

3 });

4

5 userView = Ember.View.create({

6 user: user,

7 userName: Ember.computed.oneWay('user.fullName')

8 });

9

10 // Changing the name of the user object changes

11 // the value on the view.

12 user.set('fullName', "Krang Gates");

13 // userView.userName will become "Krang Gates"

14

15 // ...but changes to the view don't make it back to

16 // the object.

17 userView.set('userName', "Truckasaurus Gates");

18 user.get('fullName'); // "Krang Gates"

Reopening Classes and Instances

You don’t need to define a class all at once. You can reopen a class and define new properties using
the reopen method.

1 Person.reopen({

2 isPerson: true

3 });

4

5 Person.create().get('isPerson') // true

When using reopen, you can also override existing methods and call this._super.

1 Person.reopen({

2 // override `say` to add an ! at the end

3 say: function(thing) {

4 this._super(thing + "!");

5 }

6 });

reopen is used to add instance methods and properties that are shared across all instances of a class.
It does not add methods and properties to a particular instance of a class as in vanilla JavaScript
(without using prototype).

The Object Model 56

But when you need to create class methods or add properties to the class itself you can use
reopenClass.

1 Person.reopenClass({

2 createMan: function() {

3 return Person.create({isMan: true})

4 }

5 });

6

7 Person.createMan().get('isMan') // true

Bindings, Observers, Computed Properties: What Do I
Use When?

Sometimes new users are confused about when to use computed properties, bindings and observers.
Here are some guidelines to help:

1. Use computed properties to build a new property by synthesizing other properties. Computed
properties should not contain application behavior, and should generally not cause any side-
effects when called. Except in rare cases, multiple calls to the same computed property should
always return the same value (unless the properties it depends on have changed, of course.)

2. Observers should contain behavior that reacts to changes in another property. Observers
are especially useful when you need to perform some behavior after a binding has finished
synchronizing.

3. Bindings are most often used to ensure objects in two different layers are always in sync. For
example, you bind your views to your controller using Handlebars.

Application
Creating an Application

The first step to creating an Ember.js application is to make an instance of Ember.Application and
assign it to a global variable.

1 window.App = Ember.Application.create();

Most people call their application App, but you can call it whatever makes the most sense to you.
Just make sure it starts with a capital letter.

What does creating an Ember.Application instance get you?

1. It is your application’s namespace. All of the classes in your application will be defined
as properties on this object (e.g., App.PostsView and App.PostsController). This helps to
prevent polluting the global scope.

2. It adds event listeners to the document and is responsible for delegating events to your views.
(See The View Layer¹²⁷ for a detailed description.)

3. It automatically renders the application template¹²⁸.
4. It automatically creates a router and begins routing, choosing which template and model to

display based on the current URL.

¹²⁷http://emberjs.com/guides/understanding-ember/the-view-layer
¹²⁸http://emberjs.com/guides/templates/the-application-template

http://emberjs.com/guides/understanding-ember/the-view-layer
http://emberjs.com/guides/templates/the-application-template
http://emberjs.com/guides/understanding-ember/the-view-layer
http://emberjs.com/guides/templates/the-application-template

Templates
The Application Template

The application template is the default template that is rendered when your application starts.

You should put your header, footer, and any other decorative content here. Additionally, you should
have at least one {{outlet}}: a placeholder that the router will fill in with the appropriate template,
based on the current URL.

Here’s an example template:

1 <header>

2 <h1>Igor's Blog</h1>

3 </header>

4

5 <div>

6 {{outlet}}

7 </div>

8

9 <footer>

10 ©2013 Igor's Publishing, Inc.

11 </footer>

The header and footer will always be displayed on screen, but the contents of the <div> will change
depending on if the user is currently at /posts or /posts/15, for example.

For more information about how outlets are filled in by the router, see Routing¹²⁹.

If you are keeping your templates in HTML, create a <script> tag without a template name. Ember
will use the template without a name as the application template and it will automatically be
compiled and appended to the screen.

¹²⁹http://emberjs.com/guides/routing

http://emberjs.com/guides/routing
http://emberjs.com/guides/routing

Templates 59

1 <script type="text/x-handlebars">

2 <div>

3 {{outlet}}

4 </div>

5 </script>

If you’re using build tools to load your templates, make sure you name the template application.

Handlebars Basics

Ember.js uses the Handlebars templating library¹³⁰ to power your app’s user interface. Handlebars
templates are just like regular HTML, but also give you the ability to embed expressions that change
what is displayed.

We take Handlebars and extend it with many powerful features. It may help to think of your
Handlebars templates as an HTML-like DSL for describing the user interface of your app. And,
once you’ve told Ember.js to render a given template on the screen, you don’t need to write any
additional code to make sure it keeps up-to-date.

If you’d prefer an indentation-based alternative to Handlebars syntax, try Emblem.js¹³¹, but make
sure you’re comfortable with Handlebars first!

Defining Templates

If you’re not using build tools, you can define your application’s main template inside your HTML
by putting it inside a <script> tag, like so:

1 <html>

2 <body>

3 <script type="text/x-handlebars">

4 Hello, {{firstName}} {{lastName}}!

5 </script>

6 </body>

7 </html>

This template will be compiled automatically and become your application template¹³², which will
be displayed on the page when your app loads.

You can also define templates by name that can be used later. For example, you may want to define a
reusable control that is used in many different places in your user interface. To tell Ember.js to save
the template for later, instead of displaying it immediately, you can add the data-template-name

attribute:

¹³⁰http://www.handlebarsjs.com
¹³¹http://www.emblemjs.com
¹³²http://emberjs.com/guides/templates/the-application-template

http://www.handlebarsjs.com
http://www.emblemjs.com
http://emberjs.com/guides/templates/the-application-template
http://www.handlebarsjs.com
http://www.emblemjs.com
http://emberjs.com/guides/templates/the-application-template

Templates 60

1 <html>

2 <head>

3 <script type="text/x-handlebars" data-template-name="say-hello">

4 <div class="my-cool-control">{{name}}</div>

5 </script>

6 </head>

7 </html>

If you are using build tools to manage your application’s assets, most will know how to precompile
Handlebars templates and make them available to Ember.js.

Handlebars Expressions

Each template has an associated controller : this is where the template finds the properties that it
displays.

You can display a property from your controller by wrapping the property name in curly braces, like
this:

1 Hello, {{firstName}} {{lastName}}!

This would look up the firstName and lastName properties from the controller, insert them into the
HTML described in the template, then put them into the DOM.

By default, your top-most application template is bound to your ApplicationController:

1 App.ApplicationController = Ember.Controller.extend({

2 firstName: "Trek",

3 lastName: "Glowacki"

4 });

The above template and controller would combine to display the following rendered HTML:

1 Hello, Trek Glowacki!

These expressions (and the other Handlebars features you will learn about next) are bindings aware.
That means that if the values used by your templates ever change, your HTML will be updated
automatically.

As your application grows in size, it will have many templates, each bound to different controllers.

Conditionals

Sometimes you may only want to display part of your template if a property exists.

We can use the {{#if}} helper to conditionally render a block:

Templates 61

1 {{#if person}}

2 Welcome back, {{person.firstName}} {{person.lastName}}!

3 {{/if}}

Handlebars will not render the block if the argument passed evaluates to false, undefined, null or
[] (i.e., any “falsy” value).

If the expression evaluates to falsy, we can also display an alternate template using {{else}}:

1 {{#if person}}

2 Welcome back, {{person.firstName}} {{person.lastName}}!

3 {{else}}

4 Please log in.

5 {{/if}}

To only render a block if a value is falsy, use {{#unless}}:

1 {{#unless hasPaid}}

2 You owe: ${{total}}

3 {{/unless}}

{{#if}} and {{#unless}} are examples of block expressions. These allow you to invoke a helper
with a portion of your template. Block expressions look like normal expressions except that they
contain a hash (#) before the helper name, and require a closing expression.

Displaying a List of Items

If you need to enumerate over a list of objects, use Handlebars’ {{#each}} helper:

1

2 {{#each people}}

3 Hello, {{name}}!

4 {{/each}}

5

The template inside of the {{#each}} block will be repeated once for each item in the array, with
the context of the template set to the current item.

The above example will print a list like this:

Templates 62

1

2 Hello, Yehuda!

3 Hello, Tom!

4 Hello, Trek!

5

Like everything in Handlebars, the {{#each}} helper is bindings-aware. If your application adds a
new item to the array, or removes an item, the DOM will be updated without having to write any
code.

There is an alternative form of {{#each}} that does not change the scope of its inner template. This
is useful for cases where you need to access a property from the outer scope within the loop.

1 {{name}}'s Friends

2

3

4 {{#each friend in friends}}

5 {{name}}'s friend {{friend.name}}

6 {{/each}}

7

This would print a list like this:

1 Trek's Friends

2

3

4 Trek's friend Yehuda

5 Trek's friend Tom!

6

The {{#each}} helper can have a matching {{else}}. The contents of this block will render if the
collection is empty:

1 {{#each people}}

2 Hello, {{name}}!

3 {{else}}

4 Sorry, nobody is here.

5 {{/each}}

Changing Scope

Sometimes you may want to invoke a section of your template with a different context.

For example, instead of repeating a long path, like in this example:

Templates 63

1 Welcome back, {{person.firstName}} {{person.lastName}}!

We can use the {{#with}} helper to clean it up:

1 {{#with person}}

2 Welcome back, {{firstName}} {{lastName}}!

3 {{/with}}

{{#with}} changes the context of the block you pass to it. The context, by default, is the template’s
controller. By using the {{#with}} helper, you can change the context of all of the Handlebars
expressions contained inside the block.

Note: it’s possible to store the context within a variable for nested usage using the “as” keyword:

1 {{#with person as user}}

2 {{#each book in books}}

3 {{user.firstName}} has read {{book.name}}!

4 {{/each}}

5 {{/with}}

Binding Element Attributes

In addition to normal text, youmay also want to have your templates contain HTML elements whose
attributes are bound to the controller.

For example, imagine your controller has a property that contains a URL to an image:

1 <div id="logo">

2

3 </div>

This generates the following HTML:

1 <div id="logo">

2

3 </div>

If you use {{bind-attr}} with a Boolean value, it will add or remove the specified attribute. For
example, given this template:

Templates 64

1 <input type="checkbox" {{bind-attr disabled=isAdministrator}}>

If isAdministrator is true, Handlebars will produce the following HTML element:

1 <input type="checkbox" disabled>

If isAdministrator is false, Handlebars will produce the following:

1 <input type="checkbox">

Adding data attributes

By default, view helpers do not accept data attributes. For example

1 {{#link-to "photos" data-toggle="dropdown"}}Photos{{/link-to}}

2

3 {{input type="text" data-toggle="tooltip" data-placement="bottom" title="Name"}}

renders the following HTML:

1 Photos

2

3 <input id="ember257" class="ember-view ember-text-field" type="text" title="Name\

4 ">

There are two ways to enable support for data attributes. One way would be to add an attribute
binding on the view, e.g. Ember.LinkView or Ember.TextField for the specific attribute:

1 Ember.LinkView.reopen({

2 attributeBindings: ['data-toggle']

3 });

4

5 Ember.TextField.reopen({

6 attributeBindings: ['data-toggle', 'data-placement']

7 });

Now the same handlebars code above renders the following HTML:

Templates 65

1 Photo\

2 s

3

4 <input id="ember259" class="ember-view ember-text-field"

5 type="text" data-toggle="tooltip" data-placement="bottom" title="Name">

You can also automatically bind data attributes on the base view with the following:

1 Ember.View.reopen({

2 init: function() {

3 this._super();

4 var self = this;

5

6 // bind attributes beginning with 'data-'

7 Em.keys(this).forEach(function(key) {

8 if (key.substr(0, 5) === 'data-') {

9 self.get('attributeBindings').pushObject(key);

10 }

11 });

12 }

13 });

Now you can add as many data-attributes as you want without having to specify them by name.

Binding Element Class Names

An HTML element’s class attribute can be bound like any other attribute:

1 <div {{bind-attr class="priority"}}>

2 Warning!

3 </div>

If the controller’s priority property is "p4", this template will emit the following HTML:

1 <div class="p4">

2 Warning!

3 </div>

Binding to Boolean Values

If the value to which you bind is a Boolean, Ember.js will apply the dasherized version of the property
name as a class:

Templates 66

1 <div {{bind-attr class="isUrgent"}}>

2 Warning!

3 </div>

If isUrgent is true, this emits the following HTML:

1 <div class="is-urgent">

2 Warning!

3 </div>

If isUrgent is false, no class name is added:

1 <div>

2 Warning!

3 </div>

If you want to explicitly provide a class name (instead of Ember.js dasherizing the property name),
use the following syntax:

1 <div {{bind-attr class="isUrgent:urgent"}}>

2 Warning!

3 </div>

Instead of the dasherized name, this will produce:

1 <div class="urgent">

2 Warning!

3 </div>

You can also specify a class name to add when the property is false:

1 <div {{bind-attr class="isEnabled:enabled:disabled"}}>

2 Warning!

3 </div>

In this case, if the isEnabled property is true, the enabled class will be added. If the property is
false, the class disabled will be added.

This syntax can also be used to add a class if a property is false and remove it if the property is
true, so this:

Templates 67

1 <div {{bind-attr class="isEnabled::disabled"}}>

2 Warning!

3 </div>

Will add the class disabled when isEnabled is false and add no class if isEnabled is true.

Static Classes

If you need an element to have a combination of static and bound classes, you should include the
static class in the list of bound properties, prefixed by a colon:

1 <div {{bind-attr class=":high-priority isUrgent"}}>

2 Warning!

3 </div>

This will add the literal high-priority class to the element:

1 <div class="high-priority is-urgent">

2 Warning!

3 </div>

Bound class names and static class names cannot be combined. The following example will not
work:

1 <div class="high-priority" {{bind-attr class="isUrgent"}}>

2 Warning!

3 </div>

Binding Multiple Classes

Unlike other element attributes, you can bind multiple classes:

1 <div {{bind-attr class="isUrgent priority"}}>

2 Warning!

3 </div>

This works how you would expect, applying the rules described above in order:

Templates 68

1 <div class="is-urgent p4">

2 Warning!

3 </div>

Links

The {{link-to}} Helper

You create a link to a route using the {{link-to}} helper.

1 App.Router.map(function() {

2 this.resource("photos", function(){

3 this.route("edit", { path: "/:photo_id" });

4 });

5 });

1 {{! photos.handlebars }}

2

3

4 {{#each photo in photos}}

5 {{#link-to 'photos.edit' photo}}{{photo.title}}{{/link-to}}

6 {{/each}}

7

If the model for the photos template is a list of three photos, the rendered HTML would look
something like this:

1

2 Happy Kittens

3 Puppy Running

4 Mountain Landscape

5

When the rendered link matches the current route, and the same object instance is passed into the
helper, then the link is given class="active".

The {{link-to}} helper takes:

• The name of a route. In this example, it would be index, photos, or photos.edit.

Templates 69

• At most one model for each dynamic segment¹³³. By default, Ember.js will replace each
segment with the value of the corresponding object’s id property. If there is no model to
pass to the helper, you can provide an explicit identifier value instead. The value will be filled
into the dynamic segment¹³⁴ of the route, and will make sure that the model hook is triggered.

• An optional title which will be bound to the a title attribute

1 {{! photos.handlebars }}

2

3 {{#link-to 'photo.edit' 1}}

4 First Photo Ever

5 {{/link-to}}

Example for Multiple Segments

If the route is nested, you can supply a model or an identifier for each dynamic segment.

1 App.Router.map(function() {

2 this.resource("photos", function(){

3 this.resource("photo", { path: "/:photo_id" }, function(){

4 this.route("comments");

5 this.route("comment", { path: "/comments/:comment_id" });

6 });

7 });

8 });

1 <!-- photoIndex.handlebars -->

2

3 <div class="photo">

4 {{body}}

5 </div>

6

7 <p>{{#link-to 'photo.comment' primaryComment}}Main Comment{{/link-to}}</p>

If you specify only one model, it will represent the innermost dynamic segment :comment_id. The
:photo_id segment will use the current photo.

Alternatively, you could pass both a photo and a comment to the helper:

¹³³http://emberjs.com/guides/routing/defining-your-routes/#toc_dynamic-segments
¹³⁴http://emberjs.com/guides/routing/defining-your-routes/#toc_dynamic-segments

http://emberjs.com/guides/routing/defining-your-routes/#toc_dynamic-segments
http://emberjs.com/guides/routing/defining-your-routes/#toc_dynamic-segments
http://emberjs.com/guides/routing/defining-your-routes/#toc_dynamic-segments
http://emberjs.com/guides/routing/defining-your-routes/#toc_dynamic-segments

Templates 70

1 <p>

2 {{#link-to 'photo.comment' 5 primaryComment}}

3 Main Comment for the Next Photo

4 {{/link-to}}

5 </p>

In the above example, the model hook for PhotoRoute will run with params.photo_id = 5. The
model hook for CommentRoute won’t run since you supplied a model object for the comment segment.
The comment’s id will populate the url according to CommentRoute’s serialize hook.

Using link-to as an inline helper

In addition to being used as a block expression, the link-to helper can also be used in inline form
by specifying the link text as the first argument to the helper:

1 A link in {{#link-to 'index'}}Block Expression Form{{/link-to}},

2 and a link in {{link-to 'Inline Form' 'index'}}.

The output of the above would be:

1 A link in Block Expression Form,

2 and a link in Inline Form.

Adding additional attributes on a link

When generating a link you might want to set additional attributes for it. You can do this with
additional arguments to the link-to helper:

1 <p>

2 {{link-to 'Edit this photo' 'photo.edit' photo class="btn btn-primary"}}

3 </p>

Many of the common HTML properties you would want to use like class, and relwill work. When
adding class names, Ember will also apply the standard ember-view and possibly active class names.

Replacing history entries

The default behavior for link-to is to add entries to the browser’s history when transitioning
between the routes. However, to replace the current entry in the browser’s history you can use
the replace=true option:

Templates 71

1 <p>

2 {{#link-to 'photo.comment' 5 primaryComment replace=true}}

3 Main Comment for the Next Photo

4 {{/link-to}}

5 </p>

Actions

The {{action}} Helper

Your app will often need a way to let users interact with controls that change application state. For
example, imagine that you have a template that shows a blog post, and supports expanding the post
with additional information.

You can use the {{action}} helper to make an HTML element clickable. When a user clicks the
element, the named event will be sent to your application.

1 <!-- post.handlebars -->

2

3 <div class='intro'>

4 {{intro}}

5 </div>

6

7 {{#if isExpanded}}

8 <div class='body'>{{body}}</div>

9 <button {{action 'contract'}}>Contract</button>

10 {{else}}

11 <button {{action 'expand'}}>Show More...</button>

12 {{/if}}

1 App.PostController = Ember.ObjectController.extend({

2 // initial value

3 isExpanded: false,

4

5 actions: {

6 expand: function() {

7 this.set('isExpanded', true);

8 },

9

10 contract: function() {

11 this.set('isExpanded', false);

Templates 72

12 }

13 }

14 });

Note that actions may be attached to any element of the DOM, but not all respond to the click

event. For example, if an action is attached to an a link without an href attribute, or to a div, some
browsers won’t execute the associated function. If it’s really needed to define actions over such
elements, a CSS workaround exists to make them clickable, cursor: pointer. For example:

1 [data-ember-action] {

2 cursor: pointer;

3 }

Action Bubbling

By default, the {{action}} helper triggers a method on the template’s controller, as illustrated above.

If the controller does not implement a method with the same name as the action in its actions object,
the action will be sent to the router, where the currently active leaf route will be given a chance to
handle the action.

Routes and controllers that handle actions must place action handlers inside an actions hash.
Even if a route has a method with the same name as the actions, it will not be triggered unless it is
inside an actions hash. In the case of a controller, while there is deprecated support for triggering
a method directly on the controller, it is strongly recommended that you put your action handling
methods inside an actions hash for forward compatibility.

1 App.PostRoute = Ember.Route.extend({

2 actions: {

3 expand: function() {

4 this.controller.set('isExpanded', true);

5 },

6

7 contract: function() {

8 this.controller.set('isExpanded', false);

9 }

10 }

11 });

As you can see in this example, the action handlers are called such that when executed, this is the
route, not the actions hash.

To continue bubbling the action, you must return true from the handler:

Templates 73

1 App.PostRoute = Ember.Route.extend({

2 actions: {

3 expand: function() {

4 this.controller.set('isExpanded', true);

5 },

6

7 contract: function() {

8 // ...

9 if (actionShouldAlsoBeTriggeredOnParentRoute) {

10 return true;

11 }

12 }

13 }

14 });

If neither the template’s controller nor the currently active route implements a handler, the action
will continue to bubble to any parent routes. Ultimately, if an ApplicationRoute is defined, it will
have an opportunity to handle the action.

When an action is triggered, but no matching action handler is implemented on the controller, the
current route, or any of the current route’s ancestors, an error will be thrown.

Action Bubbling

Templates 74

This allows you to create a button that has different behavior based on where you are in the
application. For example, you might want to have a button in a sidebar that does one thing if you
are somewhere inside of the /posts route, and another thing if you are inside of the /about route.

Action Parameters

You can optionally pass arguments to the action handler. Any values passed to the {{action}} helper
after the action name will be passed to the handler as arguments.

For example, if the post argument was passed:

1 <p><button {{action "select" post}}>✓</button> {{post.title}}</p>

The controller’s select action handler would be called with a single argument containing the post
model:

1 App.PostController = Ember.ObjectController.extend({

2 actions: {

3 select: function(post) {

4 console.log(post.get('title'));

5 }

6 }

7 });

Specifying the Type of Event

By default, the {{action}} helper listens for click events and triggers the action when the user clicks
on the element.

You can specify an alternative event by using the on option.

1 <p>

2 <button {{action "select" post on="mouseUp"}}>✓</button>

3 {{post.title}}

4 </p>

You should use the normalized event names listed in the View guide¹³⁵. In general, two-word event
names (like keypress) become keyPress.

Specifying Whitelisted Modifier Keys

By default the {{action}} helper will ignore click events with pressed modifier keys. You can supply
an allowedKeys option to specify which keys should not be ignored.

¹³⁵http://emberjs.com/api/classes/Ember.TextField.html

http://emberjs.com/api/classes/Ember.TextField.html
http://emberjs.com/api/classes/Ember.TextField.html

Templates 75

1 <script type="text/x-handlebars" data-template-name='a-template'>

2 <div {{action 'anActionName' allowedKeys="alt"}}>

3 click me

4 </div>

5 </script>

This way the {{action}} will fire when clicking with the alt key pressed down.

Stopping Event Propagation

By default, the {{action}} helper allows events it handles to bubble up to parent DOM nodes. If
you want to stop propagation, you can disable propagation to the parent node.

For example, if you have a � button inside of a link, you will want to ensure that if the user clicks
on the �, that the link is not clicked.

1 {{#link-to 'post'}}

2 Post

3 <button {{action 'close' bubbles=false}}>�</button>

4 {{/link-to}}

Without bubbles=false, if the user clicked on the button, Ember.js will trigger the action, and then
the browser will propagate the click to the link.

With bubbles=false, Ember.js will stop the browser from propagating the event.

Specifying a Target

By default, the {{action}} helper will send the action to the view’s target, which is generally the
view’s controller. (Note: in the case of an Ember.Component, the default target is the component
itself.)

You can specify an alternative target by using the target option. This is most commonly used to
send actions to a view instead of a controller.

1 <p>

2 <button {{action "select" post target=view}}>✓</button>

3 {{post.title}}

4 </p>

You would handle this in an actions hash on your view.

Templates 76

1 App.PostsIndexView = Ember.View.extend({

2 actions: {

3 select: function(post) {

4 // do your business.

5 }

6 }

7 });

Note that actions sent to views in this way do not bubble up the currently rendered view hierarchy.
If you want to handle the action in a parent view, use the following:

1 <p>

2 <button {{action "select" post target=view.parentView}}>✓</button>

3 {{post.title}}

4 </p>

Input Helpers

The {{input}} and {{textarea}} helpers in Ember.js are the easiest way to create common form
controls. The {{input}} helper wraps the built-in Ember.TextField¹³⁶ and Ember.Checkbox¹³⁷ views,
while {{textarea}} wraps Ember.TextArea¹³⁸. Using these helpers, you can create these views with
declarations almost identical to how you’d create a traditional <input> or <textarea> element.

Text fields

1 {{input value="http://www.facebook.com"}}

Will become:

1 <input type="text" value="http://www.facebook.com"/>

You can pass the following standard <input> attributes within the input helper:

If these attributes are set to a quoted string, their values will be set directly on the element, as in the
previous example. However, when left unquoted, these values will be bound to a property on the
template’s current rendering context. For example:

¹³⁶http://emberjs.com/api/classes/Ember.TextField.html
¹³⁷http://emberjs.com/api/classes/Ember.Checkbox.html
¹³⁸http://emberjs.com/api/classes/Ember.TextArea.html

http://emberjs.com/api/classes/Ember.TextField.html
http://emberjs.com/api/classes/Ember.Checkbox.html
http://emberjs.com/api/classes/Ember.TextArea.html
http://emberjs.com/api/classes/Ember.TextField.html
http://emberjs.com/api/classes/Ember.Checkbox.html
http://emberjs.com/api/classes/Ember.TextArea.html

Templates 77

1 {{input type="text" value=firstName disabled=entryNotAllowed size="50"}}

Will bind the disabled attribute to the value of entryNotAllowed in the current context.

Actions

To dispatch an action on specific events, such as enter or key-press, use the following

1 {{input value=firstName action="updateFirstName" on="key-press"}}

Checkboxes

You can also use the {{input}} helper to create a checkbox by setting its type:

1 {{input type="checkbox" name="isAdmin" checked=isAdmin}}

Checkboxes support the following properties:

• checked

• disabled

• tabindex

• indeterminate

• name

• autofocus

• form

Which can be bound or set as described in the previous section.

Text Areas

1 {{textarea value=name cols="80" rows="6"}}

Will bind the value of the text area to name on the current context.

{{textarea}} supports binding and/or setting the following properties:

• value

• name

• rows

• cols

Templates 78

• placeholder

• disabled

• maxlength

• tabindex

• selectionEnd

• selectionStart

• selectionDirection

• wrap

• readonly

• autofocus

• form

• spellcheck

• required

Extending Built-In Controls

See the Built-in Views¹³⁹ section of these guides to learn how to further extend these views.

Development Helpers

Handlebars and Ember come with a few helpers that can make developing your templates a bit
easier. These helpers make it simple to output variables into your browser’s console, or activate the
debugger from your templates.

Logging

The {{log}} helper makes it easy to output variables or expressions in the current rendering context
into your browser’s console:

1 {{log 'Name is:' name}}

The {{log}} helper also accepts primitive types such as strings or numbers.

Adding a breakpoint

The {{debugger}} helper provides a handlebars equivalent to JavaScript’s debugger keyword. It will
halt execution inside the debugger helper and give you the ability to inspect the current rendering
context:

¹³⁹http://emberjs.com/guides/views/built-in-views

http://emberjs.com/guides/views/built-in-views
http://emberjs.com/guides/views/built-in-views

Templates 79

1 {{debugger}}

Just before the helper is invoked two useful variables are defined:

• templateContext The current context that variables are fetched from. This is likely a
controller.

• typeOfTemplateContext A string describing what the templateContext is.

For example, if you are wondering why a specific variable isn’t displaying in your template, you
could use the {{debugger}} helper. When the breakpoint is hit, you can use the templateContext
in your console to lookup properties:

1 > templateContext.get('name')

2 "Bruce Lee"

Rendering with Helpers

Ember.js provides several helpers that allow you to render other views and templates in different
ways.

The {{partial}} Helper

{{partial}} takes the template to be rendered as an argument, and renders that template in place.

{{partial}} does not change context or scope. It simply drops the given template into place with
the current scope.

1 <script type="text/x-handlebars" data-template-name='_author'>

2 Written by {{author.firstName}} {{author.lastName}}

3 </script>

4

5 <script type="text/x-handlebars" data-template-name='post'>

6 <h1>{{title}}</h1>

7 <div>{{body}}</div>

8 {{partial "author"}}

9 </script>

Templates 80

1 <div>

2 <h1>Why You Should Use Ember.JS</h1>

3 <div>Because it's awesome!</div>

4 Written by Yehuda Katz

5 </div>

The partial’s data-template-name must start with an underscore (e.g. data-template-name='_-
author' or data-template-name='foo/_bar')

The {{view}} Helper

This helper works like the partial helper, except instead of providing a template to be rendered within
the current template, you provide a view class. The view controls what template is rendered.

1 App.AuthorView = Ember.View.extend({

2 // We are setting templateName manually here to the default value

3 templateName: "author",

4

5 // A fullName property should probably go on App.Author,

6 // but we're doing it here for the example

7 fullName: (function() {

8 return this.get("author").get("firstName") + " " + this.get("author").get("l\

9 astName");

10 }).property("firstName","lastName")

11 })

1 <script type="text/x-handlebars" data-template-name='author'>

2 Written by {{view.fullName}}

3 </script>

4

5 <script type="text/x-handlebars" data-template-name='post'>

6 <h1>{{title}}</h1>

7 <div>{{body}}</div>

8 {{view "author"}}

9 </script>

Templates 81

1 <div>

2 <h1>Why You Should Use Ember.JS</h1>

3 <div>Because it's awesome!</div>

4 Written by Yehuda Katz

5 </div>

When using {{partial "author"}}:

• No instance of App.AuthorView will be created
• The given template will be rendered

When using {{view "author"}}:

• An instance of App.AuthorView will be created
• It will be rendered here, using the template associated with that view (the default template
being “author”)

For more information, see Inserting Views in Templates¹⁴⁰

The {{render}} Helper

{{render}} takes two parameters:

• The first parameter describes the context to be setup
• The optional second parameter is a model, which will be passed to the controller if provided

{{render}} does several things:

• When no model is provided it gets the singleton instance of the corresponding controller
• When a model is provided it gets a unique instance of the corresponding controller
• Renders the named template using this controller
• Sets the model of the corresponding controller

Modifying the post / author example slightly:

¹⁴⁰http://emberjs.com/guides/views/inserting-views-in-templates

http://emberjs.com/guides/views/inserting-views-in-templates
http://emberjs.com/guides/views/inserting-views-in-templates

Templates 82

1 <script type="text/x-handlebars" data-template-name='author'>

2 Written by {{firstName}} {{lastName}}.

3 Total Posts: {{postCount}}

4 </script>

5

6 <script type="text/x-handlebars" data-template-name='post'>

7 <h1>{{title}}</h1>

8 <div>{{body}}</div>

9 {{render "author" author}}

10 </script>

1 App.AuthorController = Ember.ObjectController.extend({

2 postCount: function() {

3 return this.get("model.posts.length");

4 }.property("model.posts.[]")

5 })

In this example, render will:

• Get an instance of App.AuthorView if that class exists, otherwise uses a default generated
view

• Use the corresponding template (in this case the default of “author”)
• Get (or generate) the singleton instance of AuthorController
• Set the AuthorController’s model to the 2nd argument passed to render, here the author field
on the post

• Render the template in place, with the context created in the previous steps.

{{render}} does not require the presence of a matching route.

{{render}} is similar to {{outlet}}. Both tell Ember.js to devote this portion of the page to
something.

{{outlet}}: The router determines the route and sets up the appropriate controllers/views/models.
{{render}}: You specify (directly and indirectly) the appropriate controllers/views/models.

Note: {{render}} cannot be called multiple times for the same route when not specifying a model.

Templates 83

Comparison Table

General

Specific

Writing Helpers

Sometimes, you may use the same HTML in your application multiple times. In those cases, you can
register a custom helper that can be invoked from any Handlebars template.

For example, imagine you are frequently wrapping certain values in a tag with a custom
class. You can register a helper from your JavaScript like this:

1 Ember.Handlebars.helper('highlight', function(value, options) {

2 var escaped = Handlebars.Utils.escapeExpression(value);

3 return new Ember.Handlebars.SafeString('' + escaped + \

4 '');

5 });

If you return HTML from a helper, and you don’t want it to be escaped, make sure to return a new
SafeString. Make sure you first escape any user data!

Anywhere in your Handlebars templates, you can now invoke this helper:

1 {{highlight name}}

and it will output the following:

1 Peter

If the name property on the current context changes, Ember.js will automatically execute the helper
again and update the DOM with the new value.

Dependencies

Imagine you want to render the full name of an App.Person. In this case, you will want to update
the output if the person itself changes, or if the firstName or lastName properties change.

Templates 84

1 Ember.Handlebars.helper('fullName', function(person) {

2 return person.get('firstName') + ' ' + person.get('lastName');

3 }, 'firstName', 'lastName');

You would use the helper like this:

1 {{fullName person}}

Now, whenever the context’s person changes, or when any of the dependent keys change, the output
will automatically update.

Both the path passed to the fullName helper and its dependent keys may be full property paths (e.g.
person.address.country).

Custom View Helpers

You may also find yourself rendering your view classes in multiple places using the {{view}} helper.
In this case, you can save yourself some typing by registering a custom view helper.

For example, let’s say you have a view called App.CalendarView. You can register a helper like this:

1 Ember.Handlebars.helper('calendar', App.CalendarView);

Using App.CalendarView in a template then becomes as simple as:

1 {{calendar}}

Which is functionally equivalent to, and accepts all the same arguments as:

1 {{view "calendar"}}

Routing
Introduction

Routing

As users interact with your application, it moves through many different states. Ember.js gives you
helpful tools for managing that state in a way that scales with your application.

To understand why this is important, imagine we are writing a web app for managing a blog. At any
given time, we should be able to answer questions like: Is the user currently logged in? Are they an
admin user? What post are they looking at? Is the settings screen open? Are they editing the current
post?

In Ember.js, each of the possible states in your application is represented by a URL. Because all of
the questions we asked above— Are we logged in? What post are we looking at? —are encapsulated
by route handlers for the URLs, answering them is both simple and accurate.

At any given time, your application has one or more active route handlers. The active handlers can
change for one of two reasons:

1. The user interacted with a view, which generated an event that caused the URL to change.
2. The user changed the URL manually (e.g., via the back button), or the page was loaded for the

first time.

When the current URL changes, the newly active route handlersmay do one ormore of the following:

1. Conditionally redirect to a new URL.
2. Update a controller so that it represents a particular model.
3. Change the template on screen, or place a new template into an existing outlet.

Logging Route Changes

As your application increases in complexity, it can be helpful to see exactly what is going on with the
router. To have Emberwrite out transition events to the log, simplymodify your Ember.Application:

Routing 86

1 App = Ember.Application.create({

2 LOG_TRANSITIONS: true

3 });

Specifying a Root URL

If your Ember application is one of multiple web applications served from the same domain, it may
be necessary to indicate to the router what the root URL for your Ember application is. By default,
Ember will assume it is served from the root of your domain.

If for example, you wanted to serve your blogging application from www.emberjs.com/blog/, it
would be necessary to specify a root URL of /blog/.

This can be achieved by setting the rootURL on the router:

1 App.Router.reopen({

2 rootURL: '/blog/'

3 });

Defining Your Routes

When your application starts, the router is responsible for displaying templates, loading data, and
otherwise setting up application state. It does so by matching the current URL to the routes that
you’ve defined.

The map¹⁴¹ method of your Ember application’s router can be invoked to define URL mappings.
When calling map, you should pass a function that will be invoked with the value this set to an
object which you can use to create routes¹⁴² and resources¹⁴³.

1 App.Router.map(function() {

2 this.route("about", { path: "/about" });

3 this.route("favorites", { path: "/favs" });

4 });

Now,when the user visits /about, Ember.js will render the about template. Visiting /favswill render
the favorites template.

Note that you can leave off the path if it is the same as the route name. In this case, the following is
equivalent to the above example:

¹⁴¹http://emberjs.com/api/classes/Ember.Router.html#method_map
¹⁴²http://emberjs.com/guides/routing/defining-your-routes/
¹⁴³http://emberjs.com/guides/routing/defining-your-routes/#toc_resources

http://emberjs.com/api/classes/Ember.Router.html#method_map
http://emberjs.com/guides/routing/defining-your-routes/
http://emberjs.com/guides/routing/defining-your-routes/#toc_resources
http://emberjs.com/api/classes/Ember.Router.html#method_map
http://emberjs.com/guides/routing/defining-your-routes/
http://emberjs.com/guides/routing/defining-your-routes/#toc_resources

Routing 87

1 App.Router.map(function() {

2 this.route("about");

3 this.route("favorites", { path: "/favs" });

4 });

Inside your templates, you can use {{link-to}} to navigate between routes, using the name that
you provided to the route method (or, in the case of /, the name index).

1 {{#link-to 'index'}}{{/link-to}}

2

3 <nav>

4 {{#link-to 'about'}}About{{/link-to}}

5 {{#link-to 'favorites'}}Favorites{{/link-to}}

6 </nav>

The {{link-to}} helper will also add an active class to the link that points to the currently active
route.

You can customize the behavior of a route by creating an Ember.Route subclass. For example, to
customize what happens when your user visits /, create an App.IndexRoute:

1 App.IndexRoute = Ember.Route.extend({

2 setupController: function(controller) {

3 // Set the IndexController's `title`

4 controller.set('title', "My App");

5 }

6 });

The IndexController is the starting context for the index template. Now that you’ve set title, you
can use it in the template:

1 <!-- get the title from the IndexController -->

2 <h1>{{title}}</h1>

(If you don’t explicitly define an App.IndexController, Ember.js will automatically generate one
for you.)

Ember.js automatically figures out the names of the routes and controllers based on the name you
pass to this.route.

Resources

You can define groups of routes that work with a resource:

Routing 88

1 App.Router.map(function() {

2 this.resource('posts', { path: '/posts' }, function() {

3 this.route('new');

4 });

5 });

As with this.route, you can leave off the path if it’s the same as the name of the route, so the
following router is equivalent:

1 App.Router.map(function() {

2 this.resource('posts', function() {

3 this.route('new');

4 });

5 });

This router creates three routes:

NOTE: If you define a resource using this.resource and do not supply a function, then the implicit
resource.index route is not created. In that case, /resource will only use the ResourceRoute,
ResourceController, and resource template.

Routes nested under a resource take the name of the resource plus their name as their route name. If
you want to transition to a route (either via transitionTo or {{#link-to}}), make sure to use the
full route name (posts.new, not new).

Visiting / renders the index template, as you would expect.

Visiting /posts is slightly different. It will first render the posts template. Then, it will render the
posts/index template into the posts template’s outlet.

Finally, visiting /posts/newwill first render the posts template, then render the posts/new template
into its outlet.

NOTE: You should use this.resource for URLs that represent a noun, and this.route for URLs
that represent adjectives or verbs modifying those nouns. For example, in the code sample above,
when specifying URLs for posts (a noun), the route was defined with this.resource('posts').
However, when defining the new action (a verb), the route was defined with this.route('new').

Dynamic Segments

One of the responsibilities of a resource’s route handler is to convert a URL into a model.

For example, if we have the resource this.resource('posts');, our route handler might look like
this:

Routing 89

1 App.PostsRoute = Ember.Route.extend({

2 model: function() {

3 return this.store.find('posts');

4 }

5 });

The posts template will then receive a list of all available posts as its context.

Because /posts represents a fixed model, we don’t need any additional information to know what
to retrieve. However, if we want a route to represent a single post, we would not want to have to
hardcode every possible post into the router.

Enter dynamic segments.

A dynamic segment is a portion of a URL that starts with a : and is followed by an identifier.

1 App.Router.map(function() {

2 this.resource('posts');

3 this.resource('post', { path: '/post/:post_id' });

4 });

5

6 App.PostRoute = Ember.Route.extend({

7 model: function(params) {

8 return this.store.find('post', params.post_id);

9 }

10 });

Because this pattern is so common, the above model hook is the default behavior.

For example, if the dynamic segment is :post_id, Ember.js is smart enough to know that it should
use the model App.Post (with the ID provided in the URL). Specifically, unless you override model,
the route will return this.store.find('post', params.post_id) automatically.

Not coincidentally, this is exactly what Ember Data expects. So if you use the Ember router with
Ember Data, your dynamic segments will work as expected out of the box.

If your model does not use the id property in the URL, you should define a serialize method on your
route:

Routing 90

1 App.Router.map(function() {

2 this.resource('post', {path: '/posts/:post_slug'});

3 });

4

5 App.PostRoute = Ember.Route.extend({

6 model: function(params) {

7 // the server returns `{ slug: 'foo-post' }`

8 return jQuery.getJSON("/posts/" + params.post_slug);

9 },

10

11 serialize: function(model) {

12 // this will make the URL `/posts/foo-post`

13 return { post_slug: model.get('slug') };

14 }

15 });

The default serializemethod inserts the model’s id into the route’s dynamic segment (in this case,
:post_id).

Nested Resources

You can nest both routes and resources:

1 App.Router.map(function() {

2 this.resource('post', { path: '/post/:post_id' }, function() {

3 this.route('edit');

4 this.resource('comments', function() {

5 this.route('new');

6 });

7 });

8 });

This router creates five routes:

The comments templatewill be rendered in the post outlet. All templates under comments (comments/index
and comments/new) will be rendered in the comments outlet.

The route, controller, and view class names for the comments resource are not prefixed with Post.
Resources always reset the namespace, ensuring that the classes can be re-used between multiple
parent resources and that class names don’t get longer the deeper nested the resources are.

You are also able to create deeply nested resources in order to preserve the namespace on your routes:

Routing 91

1 App.Router.map(function() {

2 this.resource('foo', function() {

3 this.resource('foo.bar', { path: '/bar' }, function() {

4 this.route('baz'); // This will be foo.bar.baz

5 });

6 });

7 });

This router creates the following routes:

Initial routes

A few routes are immediately available within your application:

• App.ApplicationRoute is entered when your app first boots up. It renders the application
template.

• App.IndexRoute is the default route, and will render the index template when the user visits
/ (unless / has been overridden by your own custom route).

Remember, these routes are part of every application, so you don’t need to specify them in
App.Router.map.

Wildcard / globbing routes

You can define wildcard routes that will match multiple routes. This could be used, for example, if
you’d like a catchall route which is useful when the user enters an incorrect URL not managed by
your app.

1 App.Router.map(function() {

2 this.route('catchall', {path: '/*wildcard'});

3 });

Like all routes with a dynamic segment, you must provide a context when using a {{link-to}} or
transitionTo to programatically enter this route.

Routing 92

1 App.ApplicationRoute = Ember.Route.extend({

2 actions: {

3 error: function () {

4 this.transitionTo('catchall', "application-error");

5 }

6 }

7 });

With this code, if an error bubbles up to the Application route, your application will enter the
catchall route and display /application-error in the URL.

Generated Objects

As explained in the routing guide¹⁴⁴, whenever you define a new route, Ember.js attempts to
find corresponding Route, Controller, View, and Template classes named according to naming
conventions. If an implementation of any of these objects is not found, appropriate objects will
be generated in memory for you.

Generated routes

Given you have the following route:

1 App.Router.map(function() {

2 this.resource('posts');

3 });

When you navigate to /posts, Ember.js looks for App.PostsRoute. If it doesn’t find it, it will
automatically generate an App.PostsRoute for you.

Custom Generated Routes You can have all your generated routes extend a custom route. If you
define App.Route, all generated routes will be instances of that route.

Generated Controllers

If you navigate to route posts, Ember.js looks for a controller called App.PostsController. If you
did not define it, one will be generated for you.

Ember.js can generate three types of controllers: Ember.ObjectController, Ember.ArrayController,
and Ember.Controller.

The type of controller Ember.js chooses to generate for you depends on your route’s model hook:

¹⁴⁴http://emberjs.com/guides/routing/specifying-a-routes-model

http://emberjs.com/guides/routing/specifying-a-routes-model
http://emberjs.com/guides/routing/specifying-a-routes-model

Routing 93

• If it returns an object (such as a single record), an ObjectController¹⁴⁵ will be generated.
• If it returns an array, an ArrayController¹⁴⁶ will be generated.
• If it does not return anything, an instance of Ember.Controller will be generated.

Custom Generated Controllers If you want to customize generated controllers, you can define
your own App.Controller, App.ObjectController and App.ArrayController. Generated con-
trollers will extend one of these three (depending on the conditions above).

Generated Views and Templates

A route also expects a view and a template. If you don’t define a view, a view will be generated for
you.

A generated template is empty. If it’s a resource template, the template will simply act as an outlet

so that nested routes can be seamlessly inserted. It is equivalent to:

1 {{outlet}}

Specifying A Routes Model

Templates in your application are backed by models. But how do templates know which model they
should display?

For example, if you have a photos template, how does it know which model to render?

This is one of the jobs of an Ember.Route. You can tell a template which model it should render by
defining a route with the same name as the template, and implementing its model hook.

For example, to provide somemodel data to the photos template, wewould define an App.PhotosRoute
object:

1 App.PhotosRoute = Ember.Route.extend({

2 model: function() {

3 return [{

4 title: "Tomster",

5 url: "http://emberjs.com/images/about/ember-productivity-sm.png"

6 }, {

7 title: "Eiffel Tower",

8 url: "http://emberjs.com/images/about/ember-structure-sm.png"

9 }];

10 }

11 });

¹⁴⁵http://emberjs.com/guides/templates/links
¹⁴⁶http://emberjs.com/guides/controllers/representing-multiple-models-with-arraycontroller

http://emberjs.com/guides/templates/links
http://emberjs.com/guides/controllers/representing-multiple-models-with-arraycontroller
http://emberjs.com/guides/templates/links
http://emberjs.com/guides/controllers/representing-multiple-models-with-arraycontroller

Routing 94

JS Bin¹⁴⁷

Asynchronously Loading Models

In the above example, the model data was returned synchronously from the model hook. This means
that the data was available immediately and your application did not need to wait for it to load, in
this case because we immediately returned an array of hardcoded data.

Of course, this is not always realistic. Usually, the data will not be available synchronously, but
instead must be loaded asynchronously over the network. For example, we may want to retrieve the
list of photos from a JSON API available on our server.

In cases where data is available asynchronously, you can just return a promise from the model hook,
and Ember will wait until that promise is resolved before rendering the template.

If you’re unfamiliar with promises, the basic idea is that they are objects that represent eventual
values. For example, if you use jQuery’s getJSON() method, it will return a promise for the JSON
that is eventually returned over the network. Ember uses this promise object to know when it has
enough data to continue rendering.

For more about promises, see A Word on Promises¹⁴⁸ in the Asynchronous Routing guide.

Let’s look at an example in action. Here’s a route that loads the most recent pull requests sent to
Ember.js on GitHub:

1 App.PullRequestsRoute = Ember.Route.extend({

2 model: function() {

3 return Ember.$.getJSON('https://api.github.com/repos/emberjs/ember.js/pulls'\

4);

5 }

6 });

While this example looks like it’s synchronous, making it easy to read and reason about, it’s actually
completely asynchronous. That’s because jQuery’s getJSON()method returns a promise. Ember will
detect the fact that you’ve returned a promise from the model hook, and wait until that promise
resolves to render the pullRequests template.

(For more information on jQuery’s XHR functionality, see jQuery.ajax¹⁴⁹ in the jQuery documen-
tation.)

Because Ember supports promises, it can work with any persistence library that uses them as part
of its public API. You can also use many of the conveniences built in to promises to make your code
even nicer.

¹⁴⁷http://jsbin.com/oLUTEd
¹⁴⁸http://emberjs.com/guides/routing/asynchronous-routing/#toc_a-word-on-promises
¹⁴⁹http://api.jquery.com/jQuery.ajax/

http://jsbin.com/oLUTEd
http://emberjs.com/guides/routing/asynchronous-routing/#toc_a-word-on-promises
http://api.jquery.com/jQuery.ajax/
http://jsbin.com/oLUTEd
http://emberjs.com/guides/routing/asynchronous-routing/#toc_a-word-on-promises
http://api.jquery.com/jQuery.ajax/

Routing 95

For example, imagine if we wanted to modify the above example so that the template only displayed
the three most recent pull requests. We can rely on promise chaining to modify the data returned
from the JSON request before it gets passed to the template:

1 App.PullRequestsRoute = Ember.Route.extend({

2 model: function() {

3 var url = 'https://api.github.com/repos/emberjs/ember.js/pulls';

4 return Ember.$.getJSON(url).then(function(data) {

5 return data.splice(0, 3);

6 });

7 }

8 });

Setting Up Controllers with the Model

So what actually happens with the value you return from the model hook?

By default, the value returned from your model hook will be assigned to the model property of the
associated controller. For example, if your App.PostsRoute returns an object from its model hook,
that object will be set as the model property of the App.PostsController.

(This, under the hood, is how templates know which model to render: they look at their asso-
ciated controller’s model property. For example, the photos template will render whatever the
App.PhotosController’s model property is set to.)

See the Setting Up a Controller guide¹⁵⁰ to learn how to change this default behavior. Note that if
you override the default behavior and do not set the model property on a controller, your template
will not have any data to render!

Dynamic Models

Some routes always display the same model. For example, the /photos route will always display the
same list of photos available in the application. If your user leaves this route and comes back later,
the model does not change.

However, you will often have a route whose model will change depending on user interaction. For
example, imagine a photo viewer app. The /photos route will render the photos template with the
list of photos as the model, which never changes. But when the user clicks on a particular photo, we
want to display that model with the photo template. If the user goes back and clicks on a different
photo, we want to display the photo template again, this time with a different model.

In cases like this, it’s important that we include some information in the URL about not only which
template to display, but also which model.

¹⁵⁰http://emberjs.com/guides/routing/specifying-a-routes-model

http://emberjs.com/guides/routing/specifying-a-routes-model
http://emberjs.com/guides/routing/specifying-a-routes-model

Routing 96

In Ember, this is accomplished by defining routes with dynamic segments.

A dynamic segment is a part of the URL that is filled in by the current model’s ID. Dynamic segments
always start with a colon (:). Our photo example might have its photo route defined like this:

1 App.Router.map(function() {

2 this.resource('photo', { path: '/photos/:photo_id' });

3 });

In this example, the photo route has a dynamic segment :photo_id. When the user goes to the photo
route to display a particular photo model (usually via the {{link-to}} helper), that model’s ID will
be placed into the URL automatically.

See Links¹⁵¹ for more information about linking to a route with a model using the {{link-to}}

helper.

For example, if you transitioned to the photo route with a model whose id property was 47, the URL
in the user’s browser would be updated to:

1 /photos/47

What happens if the user visits your application directly with a URL that contains a dynamic
segment? For example, they might reload the page, or send the link to a friend, who clicks on it.
At that point, because we are starting the application up from scratch, the actual JavaScript model
object to display has been lost; all we have is the ID from the URL.

Luckily, Ember will extract any dynamic segments from the URL for you and pass them as a hash
to the model hook as the first argument:

1 App.Router.map(function() {

2 this.resource('photo', { path: '/photos/:photo_id' });

3 });

4

5 App.PhotoRoute = Ember.Route.extend({

6 model: function(params) {

7 return Ember.$.getJSON('/photos/'+params.photo_id);

8 }

9 });

In the model hook for routes with dynamic segments, it’s your job to turn the ID (something like 47
or post-slug) into a model that can be rendered by the route’s template. In the above example, we

¹⁵¹http://emberjs.com/guides/templates/links

http://emberjs.com/guides/templates/links
http://emberjs.com/guides/templates/links

Routing 97

use the photo’s ID (params.photo_id) to construct a URL for the JSON representation of that photo.
Once we have the URL, we use jQuery to return a promise for the JSON model data.

Note: A route with a dynamic segment will only have its model hook called when it is entered via the
URL. If the route is entered through a transition (e.g. when using the link-to¹⁵² Handlebars helper),
then a model context is already provided and the hook is not executed. Routes without dynamic
segments will always execute the model hook.

Refreshing your model

If your data represented by your model is being updated frequently, you may want to refresh it
periodically:

JS Bin¹⁵³

The controller can send an action to the Route; in this example above, the IndexController exposes
an action getLatest which sends the route an action called invalidateModel. Calling the route’s
refresh method will force Ember to execute the model hook again.

Ember Data

Many Ember developers use amodel library tomake finding and saving records easier thanmanually
managing Ajax calls. In particular, using a model library allows you to cache records that have been
loaded, significantly improving the performance of your application.

One popular model library built for Ember is Ember Data. To learn more about using Ember Data
to manage your models, see the Models¹⁵⁴ guide.

Setting Up A Controller

Changing the URL may also change which template is displayed on screen. Templates, however, are
usually only useful if they have some source of information to display.

In Ember.js, a template retrieves information to display from a controller.

Two built-in controllers—Ember.ObjectController and Ember.ArrayController—make it easy for
a controller to present a model’s properties to a template, along with any additional display-specific
properties.

To tell one of these controllers which model to present, set its model property in the route handler’s
setupController hook.

¹⁵²http://emberjs.com/guides/templates/links
¹⁵³http://jsbin.com/sefuv
¹⁵⁴http://emberjs.com/guides/models

http://emberjs.com/guides/templates/links
http://jsbin.com/sefuv
http://emberjs.com/guides/models
http://emberjs.com/guides/templates/links
http://jsbin.com/sefuv
http://emberjs.com/guides/models

Routing 98

1 App.Router.map(function() {

2 this.resource('post', { path: '/posts/:post_id' });

3 });

4

5 App.PostRoute = Ember.Route.extend({

6 // The code below is the default behavior, so if this is all you

7 // need, you do not need to provide a setupController implementation

8 // at all.

9 setupController: function(controller, model) {

10 controller.set('model', model);

11 }

12 });

The setupController hook receives the route handler’s associated controller as its first ar-
gument. In this case, the PostRoute’s setupController receives the application’s instance of
App.PostController.

To specify a controller other than the default, set the route’s controllerName property:

1 App.SpecialPostRoute = Ember.Route.extend({

2 controllerName: 'post'

3 });

As a second argument, it receives the route handler’s model. For more information, see Specifying
a Route’s Model¹⁵⁵.

The default setupController hook sets the model property of the associated controller to the route
handler’s model.

If you want to configure a controller other than the controller associated with the route handler, use
the controllerFor method:

1 App.PostRoute = Ember.Route.extend({

2 setupController: function(controller, model) {

3 this.controllerFor('topPost').set('model', model);

4 }

5 });

Rendering A Template

One of themost important jobs of a route handler is rendering the appropriate template to the screen.

By default, a route handler will render the template into the closest parent with a template.

¹⁵⁵http://emberjs.com/guides/routing/specifying-a-routes-model

http://emberjs.com/guides/routing/specifying-a-routes-model
http://emberjs.com/guides/routing/specifying-a-routes-model
http://emberjs.com/guides/routing/specifying-a-routes-model

Routing 99

1 App.Router.map(function() {

2 this.resource('posts');

3 });

4

5 App.PostsRoute = Ember.Route.extend();

If you want to render a template other than the one associated with the route handler, implement
the renderTemplate hook:

1 App.PostsRoute = Ember.Route.extend({

2 renderTemplate: function() {

3 this.render('favoritePost');

4 }

5 });

If you want to use a different controller than the route handler’s controller, pass the controller’s
name in the controller option:

1 App.PostsRoute = Ember.Route.extend({

2 renderTemplate: function() {

3 this.render({ controller: 'favoritePost' });

4 }

5 });

Ember allows you to name your outlets. For instance, this code allows you to specify two outlets
with distinct names:

1 <div class="toolbar">{{outlet toolbar}}</div>

2 <div class="sidebar">{{outlet sidebar}}</div>

So, if you want to render your posts into the sidebar outlet, use code like this:

1 App.PostsRoute = Ember.Route.extend({

2 renderTemplate: function() {

3 this.render({ outlet: 'sidebar' });

4 }

5 });

All of the options described above can be used together in whatever combination you’d like:

Routing 100

1 App.PostsRoute = Ember.Route.extend({

2 renderTemplate: function() {

3 var controller = this.controllerFor('favoritePost');

4

5 // Render the `favoritePost` template into

6 // the outlet `posts`, and use the `favoritePost`

7 // controller.

8 this.render('favoritePost', {

9 outlet: 'posts',

10 controller: controller

11 });

12 }

13 });

If you want to render two different templates into outlets of two different rendered templates of a
route:

1 App.PostRoute = App.Route.extend({

2 renderTemplate: function() {

3 this.render('favoritePost', { // the template to render

4 into: 'posts', // the template to render into

5 outlet: 'posts', // the name of the outlet in that template

6 controller: 'blogPost' // the controller to use for the template

7 });

8 this.render('comments', {

9 into: 'favoritePost',

10 outlet: 'comment',

11 controller: 'blogPost'

12 });

13 }

14 });

Redirecting

Transitioning and Redirecting

Calling transitionTo from a route or transitionToRoute from a controller will stop any transition
currently in progress and start a new one, functioning as a redirect. transitionTo takes parameters
and behaves exactly like the link-to¹⁵⁶ helper:

¹⁵⁶http://emberjs.com/guides/templates/links

http://emberjs.com/guides/templates/links
http://emberjs.com/guides/templates/links

Routing 101

• If you transition into a route without dynamic segments that route’s model hook will always
run.

• If the new route has dynamic segments, you need to pass either a model or an identifier for
each segment. Passing a model will skip that segment’s model hook. Passing an identifier will
run the model hook and you’ll be able to access the identifier in the params. See Links¹⁵⁷ for
more detail.

Before the model is known

If you want to redirect from one route to another, you can do the transition in the beforeModel hook
of your route handler.

1 App.Router.map(function() {

2 this.resource('posts');

3 });

4

5 App.IndexRoute = Ember.Route.extend({

6 beforeModel: function() {

7 this.transitionTo('posts');

8 }

9 });

After the model is known

If you need some information about the current model in order to decide about the redirection, you
should either use the afterModel or the redirect hook. They receive the resolved model as the first
parameter and the transition as the second one, and thus function as aliases. (In fact, the default
implementation of afterModel just calls redirect.)

1 App.Router.map(function() {

2 this.resource('posts');

3 this.resource('post', { path: '/post/:post_id' });

4 });

5

6 App.PostsRoute = Ember.Route.extend({

7 afterModel: function(posts, transition) {

8 if (posts.get('length') === 1) {

9 this.transitionTo('post', posts.get('firstObject'));

10 }

11 }

12 });

¹⁵⁷http://emberjs.com/guides/templates/links

http://emberjs.com/guides/templates/links
http://emberjs.com/guides/templates/links

Routing 102

When transitioning to the PostsRoute if it turns out that there is only one post, the current transition
will be aborted in favor of redirecting to the PostRoute with the single post object being its model.

Based on other application state

You can conditionally transition based on some other application state.

1 App.Router.map(function() {

2 this.resource('topCharts', function() {

3 this.route('choose', { path: '/' });

4 this.route('albums');

5 this.route('songs');

6 this.route('artists');

7 this.route('playlists');

8 });

9 });

10

11 App.TopChartsChooseRoute = Ember.Route.extend({

12 beforeModel: function() {

13 var lastFilter = this.controllerFor('application').get('lastFilter');

14 this.transitionTo('topCharts.' + (lastFilter || 'songs'));

15 }

16 });

17

18 // Superclass to be used by all of the filter routes below

19 App.FilterRoute = Ember.Route.extend({

20 activate: function() {

21 var controller = this.controllerFor('application');

22 controller.set('lastFilter', this.templateName);

23 }

24 });

25

26 App.TopChartsSongsRoute = App.FilterRoute.extend();

27 App.TopChartsAlbumsRoute = App.FilterRoute.extend();

28 App.TopChartsArtistsRoute = App.FilterRoute.extend();

29 App.TopChartsPlaylistsRoute = App.FilterRoute.extend();

In this example, navigating to the / URL immediately transitions into the last filter URL that the
user was at. The first time, it transitions to the /songs URL.

Your route can also choose to transition only in some cases. If the beforeModel hook does not
abort or transition to a new route, the remaining hooks (model, afterModel, setupController,
renderTemplate) will execute as usual.

Routing 103

Specifying The URL Type

By default the Router uses the browser’s hash to load the starting state of your application and will
keep it in sync as you move around. At present, this relies on a hashchange¹⁵⁸ event existing in the
browser.

Given the following router, entering /#/posts/new will take you to the posts.new route.

1 App.Router.map(function() {

2 this.resource('posts', function() {

3 this.route('new');

4 });

5 });

If you want /posts/new to work instead, you can tell the Router to use the browser’s history¹⁵⁹ API.

Keep in mind that your server must serve the Ember app at all the routes defined here.

1 App.Router.reopen({

2 location: 'history'

3 });

Finally, if you don’t want the browser’s URL to interact with your application at all, you can disable
the location API entirely. This is useful for testing, or when you need to manage state with your
Router, but temporarily don’t want it to muck with the URL (for example when you embed your
application in a larger page).

1 App.Router.reopen({

2 location: 'none'

3 });

Query Parameters

Query parameters are optional key-value pairs that appear to the right of the ? in a URL. For example,
the following URL has two query params, sort and page, with respective values ASC and 2:

1 http://example.com/articles?sort=ASC&page=2

Query params allow for additional application state to be serialized into the URL that can’t otherwise
fit into the path of the URL (i.e. everything to the left of the ?). Common use cases for query params
include representing the current page, filter criteria, or sorting criteria.

¹⁵⁸http://caniuse.com/hashchange
¹⁵⁹http://caniuse.com/history

http://caniuse.com/hashchange
http://caniuse.com/history
http://caniuse.com/hashchange
http://caniuse.com/history

Routing 104

Specifying Query Parameters

Query params can be declared on route-driven controllers, e.g. to configure query params that are
active within the articles route, they must be declared on ArticlesController.

Let’s say we’d like to add a category query parameter that will filter out all the articles that haven’t
been categorized as popular. To do this, we specify 'category' as one of ArticlesController’s
queryParams:

1 App.ArticlesController = Ember.ArrayController.extend({

2 queryParams: ['category'],

3 category: null

4 });

This sets up a binding between the category query param in the URL, and the category property
on ArticlesController. In other words, once the articles route has been entered, any changes to
the category query param in the URL will update the category property on ArticlesController,
and vice versa.

Now we just need to define a computed property of our category-filtered array that the articles
template will render:

1 App.ArticlesController = Ember.ArrayController.extend({

2 queryParams: ['category'],

3 category: null,

4

5 filteredArticles: function() {

6 var category = this.get('category');

7 var articles = this.get('model');

8

9 if (category) {

10 return articles.filterBy('category', category);

11 } else {

12 return articles;

13 }

14 }.property('category', 'model')

15 });

With this code, we have established the following behaviors:

1. If the user navigates to /articles, category will be null, so the articles won’t be filtered.
2. If the user navigates to /articles?category=recent, category will be set to "recent", so

articles will be filtered.

Routing 105

3. Once inside the articles route, any changes to the category property on ArticlesController
will cause the URL to update the query param. By default, a query param property change
won’t cause a full router transition (i.e. it won’t call model hooks and setupController, etc.);
it will only update the URL.

link-to Helper

The link-to helper supports specifying query params by way of the query-params subexpression
helper.

1 // Explicitly set target query params

2 {{#link-to 'posts' (query-params direction="asc")}}Sort{{/link-to}}

3

4 // Binding is also supported

5 {{#link-to 'posts' (query-params direction=otherDirection)}}Sort{{/link-to}}

In the above examples, direction is presumably a query param property on the PostsController,
but it could also refer to a direction property on any of the controllers associated with the posts
route hierarchy, matching the leaf-most controller with the supplied property name.

The link-to helper takes into account query parameters when determining its “active” state, and will
set the class appropriately. The active state is determined by calculating whether the query params
end up the same after clicking a link. You don’t have to supply all of the current, active query params
for this to be true.

transitionTo

Route#transitionTo (and Controller#transitionToRoute) now accepts a final argument, which
is an object with the key queryParams.

1 this.transitionTo('post', object, {queryParams: {showDetails: true}});

2 this.transitionTo('posts', {queryParams: {sort: 'title'}});

3

4 // if you just want to transition the query parameters without changing the route

5 this.transitionTo({queryParams: {direction: 'asc'}});

You can also add query params to URL transitions:

1 this.transitionTo("/posts/1?sort=date&showDetails=true");

Routing 106

Opting into a full transition

Keep in mind that if the arguments provided to transitionTo or link-to only correspond to a
change in query param values, and not a change in the route hierarchy, it is not considered a full
transition, which means that hooks like model and setupControllerwon’t fire by default, but rather
only controller properties will be updated with new query param values, as will the URL.

But some query param changes necessitate loading data from the server, in which case it is desirable
to opt into a full-on transition. To opt into a full transition when a controller query param property
changes, you can use the optional queryParams configuration hash on the Route associated with
that controller, and set that query param’s refreshModel config property to true:

1 App.ArticlesRoute = Ember.Route.extend({

2 queryParams: {

3 category: {

4 refreshModel: true

5 }

6 },

7 model: function(params) {

8 // This gets called upon entering 'articles' route

9 // for the first time, and we opt into refiring it upon

10 // query param changes by setting `refreshModel:true` above.

11

12 // params has format of { category: "someValueOrJustNull" },

13 // which we can just forward to the server.

14 return this.store.findQuery('articles', params);

15 }

16 });

17

18 App.ArticlesController = Ember.ArrayController.extend({

19 queryParams: ['category'],

20 category: null

21 });

Update URL with replaceState instead

By default, Ember will use pushState to update the URL in the address bar in response to a controller
query param property change, but if you would like to use replaceState instead (which prevents
an additional item from being added to your browser’s history), you can specify this on the Route’s
queryParams config hash, e.g. (continued from the example above):

Routing 107

1 App.ArticlesRoute = Ember.Route.extend({

2 queryParams: {

3 category: {

4 replace: true

5 }

6 }

7 });

Note that the name of this config property and its default value of false is similar to the link-to
helper’s, which also lets you opt into a replaceState transition via replace=true.

Map a controller’s property to a different query param key

By default, specifying foo as a controller query param property will bind to a query param whose
key is foo, e.g. ?foo=123. You can also map a controller property to a different query param key
using the following configuration syntax:

1 App.ArticlesController = Ember.ArrayController.extend({

2 queryParams: {

3 category: "articles_category"

4 },

5 category: null

6 });

This will cause changes to the ArticlesController’s category property to update the articles_-
category query param, and vice versa.

Note that query params that require additional customization can be provided along with strings in
the queryParams array.

1 App.ArticlesController = Ember.ArrayController.extend({

2 queryParams: ["page", "filter", {

3 category: "articles_category"

4 }],

5 category: null,

6 page: 1,

7 filter: "recent"

8 });

Default values and deserialization

In the following example, the controller query param property page is considered to have a default
value of 1.

Routing 108

1 App.ArticlesController = Ember.ArrayController.extend({

2 queryParams: 'page',

3 page: 1

4 });

This affects query param behavior in two ways:

1. Query param values are cast to the same datatype as the default value, e.g. a URL change from
/?page=3 to /?page=2 will set ArticlesController’s page property to the number 2, rather
than the string "2". The same also applies to boolean default values.

2. When a controller’s query param property is currently set to its default value, this value
won’t be serialized into the URL. So in the above example, if page is 1, the URL might look
like /articles, but once someone sets the controller’s page value to 2, the URL will become
/articles?page=2.

Sticky Query Param Values

By default, query param values in Ember are “sticky”, in that if you make changes to a query param
and then leave and re-enter the route, the new value of that query param will be preserved (rather
than reset to its default). This is a particularly handy default for preserving sort/filter parameters as
you navigate back and forth between routes.

Furthermore, these sticky query param values are remembered/restored according to the model
loaded into the route. So, given a team route with dynamic segment /:team_name and controller
query param “filter”, if you navigate to /badgers and filter by "rookies", then navigate to /bears

and filter by "best", and then navigate to /potatoes and filter by "lamest", then given the following
nav bar links,

1 {{#link-to 'team' 'badgers '}}Badgers{{/link-to}}

2 {{#link-to 'team' 'bears' }}Bears{{/link-to}}

3 {{#link-to 'team' 'potatoes'}}Potatoes{{/link-to}}

the generated links would be

1 Badgers

2 Bears

3 Potatoes

This illustrates that once you change a query param, it is stored and tied to the model loaded into
the route.

If you wish to reset a query param, you have two options:

Routing 109

1. explicitly pass in the default value for that query param into link-to or transitionTo
2. use the Route.resetController hook to set query param values back to their defaults before

exiting the route or changing the route’s model

In the following example, the controller’s page query param is reset to 1, while still scoped to the
pre-transition ArticlesRoute model. The result of this is that all links pointing back into the exited
route will use the newly reset value 1 as the value for the page query param.

1 App.ArticlesRoute = Ember.Route.extend({

2 resetController: function (controller, isExiting, transition) {

3 if (isExiting) {

4 // isExiting would be false if only the route's model was changing

5 controller.set('page', 1);

6 }

7 }

8 });

In some cases, youmight not want the sticky query param value to be scoped to the route’s model but
would rather reuse a query param’s value even as a route’s model changes. This can be accomplished
by setting the scope option to "controller" within the controller’s queryParams config hash:

1 App.ArticlesRoute = Ember.Route.extend({

2 queryParams: {

3 showMagnifyingGlass: {

4 scope: "controller"

5 }

6 }

7 });

The following demonstrates how you can override both the scope and the query param URL key of
a single controller query param property:

1 App.ArticlesController = Ember.Controller.extend({

2 queryParams: ["page", "filter",

3 {

4 showMagnifyingGlass: {

5 scope: "controller",

6 as: "glass",

7 }

8 }

9]

10 });

Routing 110

Examples

• Search queries¹⁶⁰
• Sort: client-side, no refiring of model hook¹⁶¹
• Sort: server-side, refire model hook¹⁶²
• Pagination + Sorting¹⁶³
• Boolean values. False value removes QP from URL¹⁶⁴
• Global query params on app route¹⁶⁵
• Opt-in to full transition via refresh()¹⁶⁶
• update query params by changing controller QP property¹⁶⁷
• update query params with replaceState by changing controller QP property¹⁶⁸
• w/ {{partial}} helper for easy tabbing¹⁶⁹
• link-to with no route name, only QP change¹⁷⁰
• Complex: serializing textarea content into URL (and subexpressions))¹⁷¹
• Arrays¹⁷²

Asynchronous Routing

This section covers some more advanced features of the router and its capability for handling
complex async logic within your app.

A Word on Promises…

Ember’s approach to handling asynchronous logic in the router makes heavy use of the concept
of Promises. In short, promises are objects that represent an eventual value. A promise can either
fulfill (successfully resolve the value) or reject (fail to resolve the value). The way to retrieve this
eventual value, or handle the cases when the promise rejects, is via the promise’s thenmethod, which
accepts two optional callbacks, one for fulfillment and one for rejection. If the promise fulfills, the
fulfillment handler gets called with the fulfilled value as its sole argument, and if the promise rejects,
the rejection handler gets called with a reason for the rejection as its sole argument. For example:

¹⁶⁰http://emberjs.jsbin.com/ucanam/6046
¹⁶¹http://emberjs.jsbin.com/ucanam/6048
¹⁶²http://emberjs.jsbin.com/ucanam/6049
¹⁶³http://emberjs.jsbin.com/ucanam/6050
¹⁶⁴http://emberjs.jsbin.com/ucanam/6051
¹⁶⁵http://emberjs.jsbin.com/ucanam/6052
¹⁶⁶http://emberjs.jsbin.com/ucanam/6054
¹⁶⁷http://emberjs.jsbin.com/ucanam/6055
¹⁶⁸http://emberjs.jsbin.com/ucanam/6056/edit
¹⁶⁹http://emberjs.jsbin.com/ucanam/6058
¹⁷⁰http://emberjs.jsbin.com/ucanam/6060
¹⁷¹http://emberjs.jsbin.com/ucanam/6062/edit
¹⁷²http://emberjs.jsbin.com/ucanam/6064

http://emberjs.jsbin.com/ucanam/6046
http://emberjs.jsbin.com/ucanam/6048
http://emberjs.jsbin.com/ucanam/6049
http://emberjs.jsbin.com/ucanam/6050
http://emberjs.jsbin.com/ucanam/6051
http://emberjs.jsbin.com/ucanam/6052
http://emberjs.jsbin.com/ucanam/6054
http://emberjs.jsbin.com/ucanam/6055
http://emberjs.jsbin.com/ucanam/6056/edit
http://emberjs.jsbin.com/ucanam/6058
http://emberjs.jsbin.com/ucanam/6060
http://emberjs.jsbin.com/ucanam/6062/edit
http://emberjs.jsbin.com/ucanam/6064
http://emberjs.jsbin.com/ucanam/6046
http://emberjs.jsbin.com/ucanam/6048
http://emberjs.jsbin.com/ucanam/6049
http://emberjs.jsbin.com/ucanam/6050
http://emberjs.jsbin.com/ucanam/6051
http://emberjs.jsbin.com/ucanam/6052
http://emberjs.jsbin.com/ucanam/6054
http://emberjs.jsbin.com/ucanam/6055
http://emberjs.jsbin.com/ucanam/6056/edit
http://emberjs.jsbin.com/ucanam/6058
http://emberjs.jsbin.com/ucanam/6060
http://emberjs.jsbin.com/ucanam/6062/edit
http://emberjs.jsbin.com/ucanam/6064

Routing 111

1 var promise = fetchTheAnswer();

2

3 promise.then(fulfill, reject);

4

5 function fulfill(answer) {

6 console.log("The answer is " + answer);

7 }

8

9 function reject(reason) {

10 console.log("Couldn't get the answer! Reason: " + reason);

11 }

Much of the power of promises comes from the fact that they can be chained together to perform
sequential asynchronous operations:

1 // Note: jQuery AJAX methods return promises

2 var usernamesPromise = Ember.$.getJSON('/usernames.json');

3

4 usernamesPromise.then(fetchPhotosOfUsers)

5 .then(applyInstagramFilters)

6 .then(uploadTrendyPhotoAlbum)

7 .then(displaySuccessMessage, handleErrors);

In the above example, if any of the methods fetchPhotosOfUsers, applyInstagramFilters, or
uploadTrendyPhotoAlbum returns a promise that rejects, handleErrors will be called with the
reason for the failure. In this manner, promises approximate an asynchronous form of try-catch
statements that prevent the rightward flow of nested callback after nested callback and facilitate a
saner approach to managing complex asynchronous logic in your applications.

This guide doesn’t intend to fully delve into all the different ways promises can be used, but if you’d
like a more thorough introduction, take a look at the readme for RSVP¹⁷³, the promise library that
Ember uses.

The Router Pauses for Promises

When transitioning between routes, the Ember router collects all of the models (via the model

hook) that will be passed to the route’s controllers at the end of the transition. If the model hook
(or the related beforeModel or afterModel hooks) return normal (non-promise) objects or arrays,
the transition will complete immediately. But if the model hook (or the related beforeModel or
afterModel hooks) returns a promise (or if a promisewas provided as an argument to transitionTo),
the transition will pause until that promise fulfills or rejects.

¹⁷³https://github.com/tildeio/rsvp.js

https://github.com/tildeio/rsvp.js
https://github.com/tildeio/rsvp.js

Routing 112

If the promise fulfills, the transition will pick up where it left off and begin resolving the next (child)
route’s model, pausing if it too is a promise, and so on, until all destination route models have been
resolved. The values passed to the setupController hook for each route will be the fulfilled values
from the promises.

A basic example:

1 App.TardyRoute = Ember.Route.extend({

2 model: function() {

3 return new Ember.RSVP.Promise(function(resolve) {

4 Ember.run.later(function() {

5 resolve({ msg: "Hold Your Horses" });

6 }, 3000);

7 });

8 },

9

10 setupController: function(controller, model) {

11 console.log(model.msg); // "Hold Your Horses"

12 }

13 });

When transitioning into TardyRoute, the model hook will be called and return a promise that won’t
resolve until 3 seconds later, during which time the router will be paused inmid-transition.When the
promise eventually fulfills, the router will continue transitioning and eventually call TardyRoute’s
setupController hook with the resolved object.

This pause-on-promise behavior is extremely valuable for when you need to guarantee that a route’s
data has fully loaded before displaying a new template.

When Promises Reject…

We’ve covered the case when a model promise fulfills, but what if it rejects?

By default, if a model promise rejects during a transition, the transition is aborted, no new
destination route templates are rendered, and an error is logged to the console.

You can configure this error-handling logic via the error handler on the route’s actions hash.When
a promise rejects, an error event will be fired on that route and bubble up to ApplicationRoute’s
default error handler unless it is handled by a custom error handler along the way, e.g.:

Routing 113

1 App.GoodForNothingRoute = Ember.Route.extend({

2 model: function() {

3 return Ember.RSVP.reject("FAIL");

4 },

5

6 actions: {

7 error: function(reason) {

8 alert(reason); // "FAIL"

9

10 // Can transition to another route here, e.g.

11 // this.transitionTo('index');

12

13 // Uncomment the line below to bubble this error event:

14 // return true;

15 }

16 }

17 });

In the above example, the error event would stop right at GoodForNothingRoute’s error handler and
not continue to bubble. To make the event continue bubbling up to ApplicationRoute, you can
return true from the error handler.

Recovering from Rejection

Rejected model promises halt transitions, but because promises are chainable, you can catch promise
rejects within the model hook itself and convert them into fulfills that won’t halt the transition.

1 App.FunkyRoute = Ember.Route.extend({

2 model: function() {

3 return iHopeThisWorks().then(null, function() {

4 // Promise rejected, fulfill with some default value to

5 // use as the route's model and continue on with the transition

6 return { msg: "Recovered from rejected promise" };

7 });

8 }

9 });

beforeModel and afterModel

The model hook covers many use cases for pause-on-promise transitions, but sometimes you’ll
need the help of the related hooks beforeModel and afterModel. The most common reason for

Routing 114

this is that if you’re transitioning into a route with a dynamic URL segment via {{link-to}}

or transitionTo (as opposed to a transition caused by a URL change), the model for the route
you’re transitioning into will have already been specified (e.g. {{#link-to 'article' article}}

or this.transitionTo('article', article)), in which case the model hook won’t get called. In
these cases, you’ll need to make use of either the beforeModel or afterModel hook to house any
logic while the router is still gathering all of the route’s models to perform a transition.

beforeModel

Easily the more useful of the two, the beforeModel hook is called before the router attempts to
resolve the model for the given route. In other words, it is called before the model hook gets called,
or, if model doesn’t get called, it is called before the router attempts to resolve any model promises
passed in for that route.

Like model, returning a promise from beforeModel will pause the transition until it resolves, or will
fire an error if it rejects.

The following is a far-from-exhaustive list of use cases in which beforeModel is very handy:

• Deciding whether to redirect to another route before performing a potentially wasteful server
query in model

• Ensuring that the user has an authentication token before proceeding onward to model

• Loading application code required by this route

1 App.SecretArticlesRoute = Ember.Route.extend({

2 beforeModel: function() {

3 if (!this.controllerFor('auth').get('isLoggedIn')) {

4 this.transitionTo('login');

5 }

6 }

7 });

See the API Docs for beforeModel¹⁷⁴

afterModel

The afterModel hook is called after a route’s model (which might be a promise) is resolved, and
follows the same pause-on-promise semantics as model and beforeModel. It is passed the already-
resolved model and can therefore perform any additional logic that depends on the fully resolved
value of a model.

¹⁷⁴http://emberjs.com/api/classes/Ember.Route.html#method_beforeModel

http://emberjs.com/api/classes/Ember.Route.html#method_beforeModel
http://emberjs.com/api/classes/Ember.Route.html#method_beforeModel

Routing 115

1 App.ArticlesRoute = Ember.Route.extend({

2 model: function() {

3 // App.Article.find() returns a promise-like object

4 // (it has a `then` method that can be used like a promise)

5 return App.Article.find();

6 },

7 afterModel: function(articles) {

8 if (articles.get('length') === 1) {

9 this.transitionTo('article.show', articles.get('firstObject'));

10 }

11 }

12 });

You might be wondering why we can’t just put the afterModel logic into the fulfill handler of
the promise returned from model; the reason, as mentioned above, is that transitions initiated via
{{link-to}} or transitionTo likely already provided the model for this route, so model wouldn’t
be called in these cases.

See the API Docs for afterModel¹⁷⁵

More Resources

• Embercasts: Client-side Authentication Part 2¹⁷⁶
• RC6 Blog Post describing these new features¹⁷⁷

Loading / Error Substates

In addition to the techniques described in the Asynchronous Routing Guide¹⁷⁸, the Ember Router
provides powerful yet overridable conventions for customizing asynchronous transitions between
routes by making use of error and loading substates.

loading substates

The Ember Router allows you to return promises from the various beforeModel/model/afterModel
hooks in the course of a transition (described here¹⁷⁹). These promises pause the transition until they
fulfill, at which point the transition will resume.

Consider the following:

¹⁷⁵http://emberjs.com/api/classes/Ember.Route.html#method_afterModel
¹⁷⁶http://www.embercasts.com/episodes/client-side-authentication-part-2
¹⁷⁷http://emberjs.com/blog/2013/06/23/ember-1-0-rc6.html
¹⁷⁸http://emberjs.com/guides/routing/asynchronous-routing/
¹⁷⁹http://emberjs.com/guides/routing/asynchronous-routing/

http://emberjs.com/api/classes/Ember.Route.html#method_afterModel
http://www.embercasts.com/episodes/client-side-authentication-part-2
http://emberjs.com/blog/2013/06/23/ember-1-0-rc6.html
http://emberjs.com/guides/routing/asynchronous-routing/
http://emberjs.com/guides/routing/asynchronous-routing/
http://emberjs.com/api/classes/Ember.Route.html#method_afterModel
http://www.embercasts.com/episodes/client-side-authentication-part-2
http://emberjs.com/blog/2013/06/23/ember-1-0-rc6.html
http://emberjs.com/guides/routing/asynchronous-routing/
http://emberjs.com/guides/routing/asynchronous-routing/

Routing 116

1 App.Router.map(function() {

2 this.resource('foo', function() { // -> FooRoute

3 this.route('slowModel'); // -> FooSlowModelRoute

4 });

5 });

6

7 App.FooSlowModelRoute = Ember.Route.extend({

8 model: function() {

9 return somePromiseThatTakesAWhileToResolve();

10 }

11 });

If you navigate to foo/slow_model, and in FooSlowModelRoute#model, you return an AJAX query
promise that takes a long time to complete. During this time, your UI isn’t really giving you any
feedback as to what’s happening; if you’re entering this route after a full page refresh, your UI will be
entirely blank, as you have not actually finished fully entering any route and haven’t yet displayed
any templates; if you’re navigating to foo/slow_model from another route, you’ll continue to see
the templates from the previous route until the model finish loading, and then, boom, suddenly all
the templates for foo/slow_model load.

So, how can we provide some visual feedback during the transition?

Ember provides a default implementation of the loading process that implements the following
loading substate behavior.

1 App.Router.map(function() {

2 this.resource('foo', function() { // -> FooRoute

3 this.resource('foo.bar', function() { // -> FooBarRoute

4 this.route('baz'); // -> FooBarBazRoute

5 });

6 });

7 });

If a route with the path foo.bar.baz returns a promise that doesn’t immediately resolve, Ember will
try to find a loading route in the hierarchy above foo.bar.baz that it can transition into, starting
with foo.bar.baz’s sibling:

1. foo.bar.loading
2. foo.loading
3. loading

Ember will find a loading route at the above location if either a) a Route subclass has been defined
for such a route, e.g.

Routing 117

1. App.FooBarLoadingRoute
2. App.FooLoadingRoute
3. App.LoadingRoute

or b) a properly-named loading template has been found, e.g.

1. foo/bar/loading
2. foo/loading
3. loading

During a slow asynchronous transition, Ember will transition into the first loading sub-state/route
that it finds, if one exists. The intermediate transition into the loading substate happens immediately
(synchronously), the URL won’t be updated, and, unlike other transitions that happen while another
asynchronous transition is active, the currently active async transition won’t be aborted.

After transitioning into a loading substate, the corresponding template for that substate, if present,
will be rendered into the main outlet of the parent route, e.g. foo.bar.loading’s template would
render into foo.bar’s outlet. (This isn’t particular to loading routes; all routes behave this way by
default.)

Once the main async transition into foo.bar.baz completes, the loading substate will be exited, its
template torn down, foo.bar.baz will be entered, and its templates rendered.

Eager vs. Lazy Async Transitions

Loading substates are optional, but if you provide one, you are essentially telling Ember that you
want this async transition to be “eager”; in the absence of destination route loading substates, the
router will “lazily” remain on the pre-transition route while all of the destination routes’ promises
resolve, and only fully transition to the destination route (and renders its templates, etc.) once the
transition is complete. But once you provide a destination route loading substate, you are opting into
an “eager” transition, which is to say that, unlike the “lazy” default, you will eagerly exit the source
routes (and tear down their templates, etc) in order to transition into this substate. URLs always
update immediately unless the transition was aborted or redirected within the same run loop.

This has implications on error handling, i.e. when a transition into another route fails, a lazy
transition will (by default) just remain on the previous route, whereas an eager transition will have
already left the pre-transition route to enter a loading substate.

The loading event

If you return a promise from the various beforeModel/model/afterModel hooks, and it doesn’t im-
mediately resolve, a loading eventwill be fired on that route and bubble upward to ApplicationRoute.

If the loading handler is not defined at the specific route, the event will continue to bubble above a
transition’s pivot route, providing the ApplicationRoute the opportunity to manage it.

Routing 118

1 App.FooSlowModelRoute = Ember.Route.extend({

2 model: function() {

3 return somePromiseThatTakesAWhileToResolve();

4 },

5 actions: {

6 loading: function(transition, originRoute) {

7 //displayLoadingSpinner();

8

9 // Return true to bubble this event to `FooRoute`

10 // or `ApplicationRoute`.

11 return true;

12 }

13 }

14 });

The loading handler provides the ability to decide what to do during the loading process. If the last
loading handler is not defined or returns true, Ember will perform the loading substate behavior.

1 App.ApplicationRoute = Ember.Route.extend({

2 actions: {

3 loading: function(transition, originRoute) {

4 displayLoadingSpinner();

5

6 // substate implementation when returning `true`

7 return true;

8 }

9 }

10 });

error substates

Ember provides an analogous approach to loading substates in the case of errors encountered during
a transition.

Similar to how the default loading event handlers are implemented, the default error handlers will
look for an appropriate error substate to enter, if one can be found.

Routing 119

1 App.Router.map(function() {

2 this.resource('articles', function() { // -> ArticlesRoute

3 this.route('overview'); // -> ArticlesOverviewRoute

4 });

5 });

For instance, an error thrown or rejecting promise returned from ArticlesOverviewRoute#model

(or beforeModel or afterModel) will look for:

1. Either ArticlesErrorRoute or articles/error template
2. Either ErrorRoute or error template

If one of the above is found, the router will immediately transition into that substate (without
updating the URL). The “reason” for the error (i.e. the exception thrown or the promise reject value)
will be passed to that error state as its model.

If no viable error substates can be found, an error message will be logged.

error substates with dynamic segments

Routes with dynamic segments are often mapped to a mental model of “two separate levels.” Take
for example:

1 App.Router.map(function() {

2 this.resource('foo', {path: '/foo/:id'}, function() {

3 this.route('baz');

4 });

5 });

6

7 App.FooRoute = Ember.Route.extend({

8 model: function(params) {

9 return new Ember.RSVP.Promise(function(resolve, reject) {

10 reject("Error");

11 });

12 }

13 });

In the URL hierarchy you would visit /foo/12which would result in rendering the foo template into
the application template’s outlet. In the event of an error while attempting to load the foo route
you would also render the top-level error template into the application template’s outlet. This
is intentionally parallel behavior as the foo route is never successfully entered. In order to create a
foo scope for errors and render foo/error into foo’s outlet you would need to split the dynamic
segment:

Routing 120

1 App.Router.map(function() {

2 this.resource('foo', {path: '/foo'}, function() {

3 this.resource('elem', {path: ':id'}, function() {

4 this.route('baz');

5 });

6 });

7 });

Example JSBin¹⁸⁰

The error event

If ArticlesOverviewRoute#model returns a promise that rejects (because, for instance, the server re-
turned an error, or the user isn’t logged in, etc.), an error event will fire on ArticlesOverviewRoute

and bubble upward. This error event can be handled and used to display an error message, redirect
to a login page, etc.

1 App.ArticlesOverviewRoute = Ember.Route.extend({

2 model: function(params) {

3 return new Ember.RSVP.Promise(function(resolve, reject) {

4 reject("Error");

5 });

6 },

7 actions: {

8 error: function(error, transition) {

9

10 if (error && error.status === 400) {

11 // error substate and parent routes do not handle this error

12 return this.transitionTo('modelNotFound');

13 }

14

15 // Return true to bubble this event to any parent route.

16 return true;

17 }

18 }

19 });

In analogy with the loading event, you could manage the error event at the Application level to
perform any app logic and based on the result of the last error handler, Ember will decide if substate
behavior must be performed or not.

¹⁸⁰http://emberjs.jsbin.com/ucanam/4279

http://emberjs.jsbin.com/ucanam/4279
http://emberjs.jsbin.com/ucanam/4279

Routing 121

1 App.ApplicationRoute = Ember.Route.extend({

2 actions: {

3 error: function(error, transition) {

4

5 // Manage your errors

6 Ember.onerror(error);

7

8 // substate implementation when returning `true`

9 return true;

10

11 }

12 }

13 });

Legacy LoadingRoute

Previous versions of Ember (somewhat inadvertently) allowed you to define a global LoadingRoute
which would be activated whenever a slow promise was encountered during a transition and exited
upon completion of the transition. Because the loading template rendered as a top-level view and
not within an outlet, it could be used for little more than displaying a loading spinner during
slow transitions. Loading events/substates give you far more control, but if you’d like to emulate
something similar to the legacy LoadingRoute behavior, you could do as follows:

1 App.LoadingView = Ember.View.extend({

2 templateName: 'global-loading',

3 elementId: 'global-loading'

4 });

5

6 App.ApplicationRoute = Ember.Route.extend({

7 actions: {

8 loading: function() {

9 var view = this.container.lookup('view:loading').append();

10 this.router.one('didTransition', view, 'destroy');

11 }

12 }

13 });

Example JSBin¹⁸¹

This will, like the legacy LoadingRoute, append a top-level view when the router goes into a loading
state, and tear down the view once the transition finishes.

¹⁸¹http://emberjs.jsbin.com/ucanam/3307

http://emberjs.jsbin.com/ucanam/3307
http://emberjs.jsbin.com/ucanam/3307

Routing 122

Preventing And Retrying Transitions

During a route transition, the Ember Router passes a transition object to the various hooks on the
routes involved in the transition. Any hook that has access to this transition object has the ability
to immediately abort the transition by calling transition.abort(), and if the transition object is
stored, it can be re-attempted at a later time by calling transition.retry().

Preventing Transitions via willTransition

When a transition is attempted, whether via {{link-to}}, transitionTo, or a URL change, a
willTransition action is fired on the currently active routes. This gives each active route, starting
with the leaf-most route, the opportunity to decide whether or not the transition should occur.

Imagine your app is in a route that’s displaying a complex form for the user to fill out and the user
accidentally navigates backwards. Unless the transition is prevented, the user might lose all of the
progress they made on the form, which can make for a pretty frustrating user experience.

Here’s one way this situation could be handled:

1 App.FormRoute = Ember.Route.extend({

2 actions: {

3 willTransition: function(transition) {

4 if (this.controller.get('userHasEnteredData') &&

5 !confirm("Are you sure you want to abandon progress?")) {

6 transition.abort();

7 } else {

8 // Bubble the `willTransition` action so that

9 // parent routes can decide whether or not to abort.

10 return true;

11 }

12 }

13 }

14 });

When the user clicks on a {{link-to}} helper, or when the app initiates a transition by using
transitionTo, the transition will be aborted and the URL will remain unchanged. However, if the
browser back button is used to navigate away from FormRoute, or if the user manually changes the
URL, the new URL will be navigated to before the willTransition action is called. This will result
in the browser displaying the new URL, even if willTransition calls transition.abort().

Routing 123

Aborting Transitions Within model, beforeModel, afterModel

The model, beforeModel, and afterModel hooks described in Asynchronous Routing¹⁸² each get
called with a transition object. This makes it possible for destination routes to abort attempted
transitions.

1 App.DiscoRoute = Ember.Route.extend({

2 beforeModel: function(transition) {

3 if (new Date() < new Date("January 1, 1980")) {

4 alert("Sorry, you need a time machine to enter this route.");

5 transition.abort();

6 }

7 }

8 });

Storing and Retrying a Transition

Aborted transitions can be retried at a later time. A common use case for this is having an
authenticated route redirect the user to a login page, and then redirecting them back to the
authenticated route once they’ve logged in.

1 App.SomeAuthenticatedRoute = Ember.Route.extend({

2 beforeModel: function(transition) {

3 if (!this.controllerFor('auth').get('userIsLoggedIn')) {

4 var loginController = this.controllerFor('login');

5 loginController.set('previousTransition', transition);

6 this.transitionTo('login');

7 }

8 }

9 });

10

11 App.LoginController = Ember.Controller.extend({

12 actions: {

13 login: function() {

14 // Log the user in, then reattempt previous transition if it exists.

15 var previousTransition = this.get('previousTransition');

16 if (previousTransition) {

17 this.set('previousTransition', null);

18 previousTransition.retry();

19 } else {

¹⁸²http://emberjs.com/guides/routing/asynchronous-routing

http://emberjs.com/guides/routing/asynchronous-routing
http://emberjs.com/guides/routing/asynchronous-routing

Routing 124

20 // Default back to homepage

21 this.transitionToRoute('index');

22 }

23 }

24 }

25 });

Components
Introduction

HTMLwas designed in a timewhen the browser was a simple document viewer. Developers building
great web apps need something more.

Instead of trying to replace HTML, however, Ember.js embraces it, then adds powerful new features
that modernize it for building web apps.

Currently, you are limited to the tags that are created for you by the W3C. Wouldn’t it be great if
you could define your own, application-specific HTML tags, then implement their behavior using
JavaScript?

That’s exactly what components let you do. In fact, it’s such a good idea that the W3C is currently
working on the Custom Elements¹⁸³ spec.

Ember’s implementation of components hews as closely to the Web Components specification¹⁸⁴
as possible. Once Custom Elements are widely available in browsers, you should be able to
easily migrate your Ember components to the W3C standard and have them be usable by other
frameworks.

This is so important to us that we are working closely with the standards bodies to ensure our
implementation of components matches the roadmap of the web platform.

To highlight the power of components, here is a short example of turning a blog post into a reusable
blog-post custom element that you could use again and again in your application. Keep reading
this section for more details on building components.

JS Bin¹⁸⁵

Defining A Component

To define a component, create a template whose name starts with components/. To define a new
component, {{blog-post}} for example, create a components/blog-post template.

If you are including your Handlebars templates inside an HTML file via <script> tags, it would
look like this:

¹⁸³https://dvcs.w3.org/hg/webcomponents/raw-file/tip/spec/custom/index.html
¹⁸⁴http://www.w3.org/TR/components-intro/
¹⁸⁵http://jsbin.com/ifuxey

https://dvcs.w3.org/hg/webcomponents/raw-file/tip/spec/custom/index.html
http://www.w3.org/TR/components-intro/
http://jsbin.com/ifuxey
https://dvcs.w3.org/hg/webcomponents/raw-file/tip/spec/custom/index.html
http://www.w3.org/TR/components-intro/
http://jsbin.com/ifuxey

Components 126

1 <script type="text/x-handlebars" id="components/blog-post">

2 <h1>Blog Post</h1>

3 <p>Lorem ipsum dolor sit amet.</p>

4 </script>

If you’re using build tools, create aHandlebars file at templates/components/blog-post.handlebars.

Having a template whose name starts with components/ creates a component of the same name.
Given the above template, you can now use the {{blog-post}} custom element:

1 <h1>My Blog</h1>

2 {{#each}}

3 {{blog-post}}

4 {{/each}}

JS Bin¹⁸⁶

Each component, under the hood, is backed by an element. By default Ember will use a <div>

element to contain your component’s template. To learn how to change the element Ember uses for
your component, see Customizing a Component’s Element¹⁸⁷.

Defining a Component Subclass

Often times, your components will just encapsulate certain snippets of Handlebars templates that
you find yourself using over and over. In those cases, you do not need to write any JavaScript at all.
Just define the Handlebars template as described above and use the component that is created.

If you need to customize the behavior of the component you’ll need to define a subclass of
Ember.Component. For example, you would need a custom subclass if you wanted to change a
component’s element, respond to actions from the component’s template, or manually make changes
to the component’s element using JavaScript.

Ember knows which subclass powers a component based on its name. For example, if you have a
component called blog-post, you would create a subclass called App.BlogPostComponent. If your
componentwas called audio-player-controls, the class namewould be App.AudioPlayerControlsComponent.

In other words, Ember will look for a class with the camelized name of the component, followed by
Component.

Passing Properties To A Component

By default a component does not have access to properties in the template scope in which it is used.

For example, imagine you have a blog-post component that is used to display a blog post:

¹⁸⁶http://jsbin.com/ifuxey
¹⁸⁷http://emberjs.com/guides/components/customizing-a-components-element

http://jsbin.com/ifuxey
http://emberjs.com/guides/components/customizing-a-components-element
http://jsbin.com/ifuxey
http://emberjs.com/guides/components/customizing-a-components-element

Components 127

1 <script type="text/x-handlebars" id="components/blog-post">

2 <h1>Component: {{title}}</h1>

3 <p>Lorem ipsum dolor sit amet.</p>

4 </script>

You can see that it has a {{title}} Handlebars expression to print the value of the title property
inside the <h1>.

Now imagine we have the following template and route:

1 App.IndexRoute = Ember.Route.extend({

2 model: function() {

3 return {

4 title: "Rails is omakase"

5 };

6 }

7 });

1 {{! index.handlebars }}

2 <h1>Template: {{title}}</h1>

3 {{blog-post}}

Running this code, you will see that the first <h1> (from the outer template) displays the title

property, but the second <h1> (from inside the component) is empty.

JS Bin¹⁸⁸

We can fix this by making the title property available to the component:

1 {{blog-post title=title}}

This will make the title property in the outer template scope available inside the component’s
template using the same name, title.

JS Bin¹⁸⁹

If, in the above example, the model’s title property was instead called name, we would change the
component usage to:

¹⁸⁸http://jsbin.com/ufedet
¹⁸⁹http://jsbin.com/ufedet

http://jsbin.com/ufedet
http://jsbin.com/ufedet
http://jsbin.com/ufedet
http://jsbin.com/ufedet

Components 128

1 {{blog-post title=name}}

JS Bin¹⁹⁰

In other words, you are binding a named property from the outer scope to a named property in the
component scope, with the syntax componentProperty=outerProperty.

It is important to note that the value of these properties is bound. Whether you change the value
on the model or inside the component, the values stay in sync. In the following example, type some
text in the text field either in the outer template or inside the component and note how they stay in
sync.

JS Bin¹⁹¹

You can also bind properties from inside an {{#each}} loop. This will create a component for each
item and bind it to each model in the loop.

1 {{#each}}

2 {{blog-post title=title}}

3 {{/each}}

JS Bin¹⁹²

Wrapping Content in a Component

Sometimes, you may want to define a component that wraps content provided by other templates.

For example, imagine we are building a blog-post component that we can use in our application to
display a blog post:

1 <script type="text/x-handlebars" id="components/blog-post">

2 <h1>{{title}}</h1>

3 <div class="body">{{body}}</div>

4 </script>

Now, we can use the {{blog-post}} component and pass it properties in another template:

1 {{blog-post title=title body=body}}

¹⁹⁰http://jsbin.com/ufedet
¹⁹¹http://jsbin.com/ufedet
¹⁹²http://jsbin.com/ifuxey

http://jsbin.com/ufedet
http://jsbin.com/ufedet
http://jsbin.com/ifuxey
http://jsbin.com/ufedet
http://jsbin.com/ufedet
http://jsbin.com/ifuxey

Components 129

JS Bin¹⁹³

(See Passing Properties to a Component¹⁹⁴ for more.)

In this case, the content we wanted to display came from the model. But what if we want the
developer using our component to be able to provide custom HTML content?

In addition to the simple form you’ve learned so far, components also support being used in block
form. In block form, components can be passed a Handlebars template that is rendered inside the
component’s template wherever the {{yield}} expression appears.

To use the block form, add a # character to the beginning of the component name, then make sure
to add a closing tag. (See the Handlebars documentation on block expressions¹⁹⁵ for more.)

In that case, we can use the {{blog-post}} component in block form and tell Ember where the
block content should be rendered using the {{yield}} helper. To update the example above, we’ll
first change the component’s template:

1 <script type="text/x-handlebars" id="components/blog-post">

2 <h1>{{title}}</h1>

3 <div class="body">{{yield}}</div>

4 </script>

You can see that we’ve replaced {{body}} with {{yield}}. This tells Ember that this content will
be provided when the component is used.

Next, we’ll update the template using the component to use the block form:

1 {{#blog-post title=title}}

2 <p class="author">by {{author}}</p>

3 {{body}}

4 {{/blog-post}}

JS Bin¹⁹⁶

It’s important to note that the template scope inside the component block is the same as outside. If a
property is available in the template outside the component, it is also available inside the component
block.

This JSBin illustrates the concept:

JS Bin¹⁹⁷

¹⁹³http://jsbin.com/obogub
¹⁹⁴http://emberjs.com/guides/components/passing-properties-to-a-component/
¹⁹⁵http://handlebarsjs.com/#block-expressions
¹⁹⁶http://jsbin.com/osulic
¹⁹⁷http://jsbin.com/iqocuf

http://jsbin.com/obogub
http://emberjs.com/guides/components/passing-properties-to-a-component/
http://handlebarsjs.com/#block-expressions
http://jsbin.com/osulic
http://jsbin.com/iqocuf
http://jsbin.com/obogub
http://emberjs.com/guides/components/passing-properties-to-a-component/
http://handlebarsjs.com/#block-expressions
http://jsbin.com/osulic
http://jsbin.com/iqocuf

Components 130

Customizing A Component’s Element

By default, each component is backed by a <div> element. If you were to look at a rendered
component in your developer tools, you would see a DOM representation that looked something
like:

1 <div id="ember180" class="ember-view">

2 <h1>My Component</h1>

3 </div>

You can customize what type of element Ember generates for your component, including its
attributes and class names, by creating a subclass of Ember.Component in your JavaScript.

Customizing the Element

To use a tag other than div, subclass Ember.Component and assign it a tagName property. This
property can be any valid HTML5 tag name as a string.

1 App.NavigationBarComponent = Ember.Component.extend({

2 tagName: 'nav'

3 });

1 {{! templates/components/navigation-bar }}

2

3 {{#link-to 'home'}}Home{{/link-to}}

4 {{#link-to 'about'}}About{{/link-to}}

5

Customizing Class Names

You can also specify which class names are applied to the component’s element by setting its
classNames property to an array of strings:

1 App.NavigationBarComponent = Ember.Component.extend({

2 classNames: ['primary']

3 });

If you want class names to be determined by properties of the component, you can use class name
bindings. If you bind to a Boolean property, the class name will be added or removed depending on
the value:

Components 131

1 App.TodoItemComponent = Ember.Component.extend({

2 classNameBindings: ['isUrgent'],

3 isUrgent: true

4 });

This component would render the following:

1 <div class="ember-view is-urgent"></div>

If isUrgent is changed to false, then the is-urgent class name will be removed.

By default, the name of the Boolean property is dasherized. You can customize the class name applied
by delimiting it with a colon:

1 App.TodoItemComponent = Ember.Component.extend({

2 classNameBindings: ['isUrgent:urgent'],

3 isUrgent: true

4 });

This would render this HTML:

1 <div class="ember-view urgent">

Besides the custom class name for the value being true, you can also specify a class name which is
used when the value is false:

1 App.TodoItemComponent = Ember.Component.extend({

2 classNameBindings: ['isEnabled:enabled:disabled'],

3 isEnabled: false

4 });

This would render this HTML:

1 <div class="ember-view disabled">

You can also specify a class which should only be added when the property is false by declaring
classNameBindings like this:

Components 132

1 App.TodoItemComponent = Ember.Component.extend({

2 classNameBindings: ['isEnabled::disabled'],

3 isEnabled: false

4 });

This would render this HTML:

1 <div class="ember-view disabled">

If the isEnabled property is set to true, no class name is added:

1 <div class="ember-view">

If the bound property’s value is a string, that value will be added as a class name without
modification:

1 App.TodoItemComponent = Ember.Component.extend({

2 classNameBindings: ['priority'],

3 priority: 'highestPriority'

4 });

This would render this HTML:

1 <div class="ember-view highestPriority">

Customizing Attributes

You can bind attributes to theDOMelement that represents a component by using attributeBindings:

1 App.LinkItemComponent = Ember.Component.extend({

2 tagName: 'a',

3 attributeBindings: ['href'],

4 href: "http://emberjs.com"

5 });

You can also bind these attributes to differently named properties:

Components 133

1 App.LinkItemComponent = Ember.Component.extend({

2 tagName: 'a',

3 attributeBindings: ['customHref:href'],

4 customHref: "http://emberjs.com"

5 });

Example

Here is an example todo application that shows completed todos with a red background:

JS Bin¹⁹⁸

Handling User Interaction with Actions

Components allow you to define controls that you can reuse throughout your application. If they’re
generic enough, they can also be shared with others and used in multiple applications.

To make a reusable control useful, however, you first need to allow users of your application to
interact with it.

You can make elements in your component interactive by using the {{action}} helper. This is the
same {{action}} helper you use in application templates¹⁹⁹, but it has an important difference when
used inside a component.

Instead of sending an action to the template’s controller, then bubbling up the route hierarchy,
actions sent from inside a component are sent directly to the component’s Ember.Component

instance, and do not bubble.

For example, imagine the following component that shows a post’s title. When the title is clicked,
the entire post body is shown:

1 <script type="text/x-handlebars" id="components/post-summary">

2 <h3 {{action "toggleBody"}}>{{title}}</h3>

3 {{#if isShowingBody}}

4 <p>{{{body}}}</p>

5 {{/if}}

6 </script>

¹⁹⁸http://jsbin.com/utonef
¹⁹⁹http://emberjs.com/guides/templates/actions

http://jsbin.com/utonef
http://emberjs.com/guides/templates/actions
http://jsbin.com/utonef
http://emberjs.com/guides/templates/actions

Components 134

1 App.PostSummaryComponent = Ember.Component.extend({

2 actions: {

3 toggleBody: function() {

4 this.toggleProperty('isShowingBody');

5 }

6 }

7 });

JS Bin²⁰⁰

The {{action}} helper can accept arguments, listen for different event types, control how action
bubbling occurs, and more.

For details about using the {{action}} helper, see the Actions section²⁰¹ of the Templates chapter.

Sending Actions from Components to Your Application

When a component is used inside a template, it has the ability to send actions to that template’s
controller and routes. These allow the component to inform the application when important events,
such as the user clicking a particular element in a component, occur.

Like the {{action}} Handlebars helper, actions sent from components first go to the template’s
controller. If the controller does not implement a handler for that action, it will bubble to the
template’s route, and then up the route hierarchy. For more information about this bubbling
behavior, see Action Bubbling²⁰².

Components are designed to be reusable across different parts of your application. In order to achieve
this reusability, it’s important that the actions that your components send can be specified when the
component is used in a template.

In other words, if you were writing a button component, you would not want to send a click action,
because it is ambiguous and likely to conflict with other components on the page. Instead, youwould
want to allow the person using the component to specify which action to send when the button was
clicked.

Luckily, components have a sendAction()method that allows them to send actions specified when
the component is used in a template.

Sending a Primary Action

Many components only send one kind of action. For example, a button component might send an
action when it is clicked on; this is the primary action.

To set a component’s primary action, set its action attribute in Handlebars:

²⁰⁰http://jsbin.com/EWEQeKO
²⁰¹http://emberjs.com/guides/templates/actions
²⁰²http://emberjs.com/guides/templates/actions/#toc_action-bubbling

http://jsbin.com/EWEQeKO
http://emberjs.com/guides/templates/actions
http://emberjs.com/guides/templates/actions/#toc_action-bubbling
http://jsbin.com/EWEQeKO
http://emberjs.com/guides/templates/actions
http://emberjs.com/guides/templates/actions/#toc_action-bubbling

Components 135

1 {{my-button action="showUser"}}

This tells the my-button component that it should send the showUser action when it triggers its
primary action.

So how do you trigger sending a component’s primary action? After the relevant event occurs, you
can call the sendAction() method without arguments:

1 App.MyButtonComponent = Ember.Component.extend({

2 click: function() {

3 this.sendAction();

4 }

5 });

In the above example, the my-button component will send the showUser action when the component
is clicked.

Sending Parameters with an Action

You may want to provide additional context to the route or controller handling an action. For
example, a button component may want to tell a controller not only that an item was deleted,
but also which item.

To send parameters with the primary action, call sendAction()with the string 'action' as the first
argument and any additional parameters following it:

1 this.sendAction('action', param1, param2);

For example, imagine we’re building a todo list that allows the user to delete a todo:

1 App.IndexRoute = Ember.Route.extend({

2 model: function() {

3 return {

4 todos: [{

5 title: "Learn Ember.js"

6 }, {

7 title: "Walk the dog"

8 }]

9 };

10 },

11

12 actions: {

Components 136

13 deleteTodo: function(todo) {

14 var todos = this.modelFor('index').todos;

15 todos.removeObject(todo);

16 }

17 }

18 });

1 {{! index.handlebars }}

2

3 {{#each todo in todos}}

4 <p>{{todo.title}} <button {{action "deleteTodo" todo}}>Delete</button></p>

5 {{/each}}

We want to update this app so that, before actually deleting a todo, the user must confirm that this
is what they intended. We’ll implement a component that first double-checks with the user before
completing the action.

In the component, when triggering the primary action, we’ll pass an additional argument that the
component user can specify:

1 App.ConfirmButtonComponent = Ember.Component.extend({

2 actions: {

3 showConfirmation: function() {

4 this.toggleProperty('isShowingConfirmation');

5 },

6

7 confirm: function() {

8 this.toggleProperty('isShowingConfirmation');

9 this.sendAction('action', this.get('param'));

10 }

11 }

12 });

Components 137

1 {{! templates/components/confirm-button.handlebars }}

2

3 {{#if isShowingConfirmation}}

4 <button {{action "confirm"}}>Click again to confirm</button>

5 {{else}}

6 <button {{action "showConfirmation"}}>{{title}}</button>

7 {{/if}}

Nowwe can update our initial template and replace the {{action}} helper with our new component:

1 {{! index.handlebars }}

2

3 {{#each todo in todos}}

4 <p>{{todo.title}} {{confirm-button title="Delete" action="deleteTodo" para\

5 m=todo}}</p>

6 {{/each}}

Note that we’ve specified the action to send by setting the component’s action attribute, and we’ve
specified which argument should be sent as a parameter by setting the component’s param attribute.

[JS Bin]http://jsbin.com/atIgUSi)

Sending Multiple Actions

Depending on the complexity of your component, you may need to let users specify multiple
different actions for different events that your component can generate.

For example, imagine that you’re writing a form component that the user can either submit or cancel.
Depending on which button the user clicks, you want to send a different action to your controller
or route.

You can specify which action to send by passing the name of the event as the first argument to
sendAction(). For example, you can specify two actions when using the form component:

1 {{user-form submit="createUser" cancel="cancelUserCreation"}}

In this case, you can send the createUser action by calling this.sendAction('submit'), or send
the cancelUserCreation action by calling this.sendAction('cancel').

JS Bin²⁰³

²⁰³http://jsbin.com/OpebEFO

http://jsbin.com/OpebEFO
http://jsbin.com/OpebEFO

Components 138

Actions That Aren’t Specified

If someone using your component does not specify an action for a particular event, calling
sendAction() has no effect.

For example, if you define a component that triggers the primary action on click:

1 App.MyButtonComponent = Ember.Component.extend({

2 click: function() {

3 this.sendAction();

4 }

5 });

Using this component without assigning a primary action will have no effect if the user clicks it:

1 {{my-button}}

Thinking About Component Actions

In general, you should think of component actions as translating a primitive event (like a mouse
click or an <audio> element’s pause event) into actions that have meaning within your application.

This allows your routes and controllers to implement action handlers with names like deleteTodo
or songDidPause instead of vague names like click or pause that may be ambiguous to other
developers when read out of context.

Another way to think of component actions is as the public API of your component. Thinking about
which events in your component can trigger actions in their application is the primary way other
developers will use your component. In general, keeping these events as generic as possible will lead
to components that are more flexible and reusable.

Controllers
Introduction

Controllers

In Ember.js, controllers allow you to decorate yourmodels with display logic. In general, yourmodels
will have properties that are saved to the server, while controllers will have properties that your app
does not need to save to the server.

For example, if you were building a blog, you would have a BlogPostmodel that you would present
in a blog_post template.

Your BlogPost model would have properties like:

• title

• intro

• body

• author

Your template would bind to these properties in the blog_post template:

1 <h1>{{title}}</h1>

2 <h2>by {{author}}</h2>

3

4 <div class='intro'>

5 {{intro}}

6 </div>

7 <hr>

8 <div class='body'>

9 {{body}}

10 </div>

In this simple example, we don’t have any display-specific properties or actions just yet. For now,
our controller just acts as a pass-through (or “proxy”) for the model properties. (Remember that a
controller gets the model it represents from its route handler.)

Let’s say we wanted to add a feature that would allow the user to toggle the display of the body
section. To implement this, we would first modify our template to show the body only if the value
of a new isExpanded property is true.

Controllers 140

1 <h1>{{title}}</h1>

2 <h2>by {{author}}</h2>

3

4 <div class='intro'>

5 {{intro}}

6 </div>

7 <hr>

8

9 {{#if isExpanded}}

10 <button {{action 'toggleProperty' 'isExpanded'}}>Hide Body</button>

11 <div class='body'>

12 {{body}}

13 </div>

14 {{else}}

15 <button {{action 'toggleProperty' 'isExpanded'}}>Show Body</button>

16 {{/if}}

You might think you should put this property on the model, but whether the body is expanded or
not is strictly a display concern.

Putting this property on the controller cleanly separates logic related to your data model from logic
related to what you display on the screen. This makes it easy to unit-test your model without having
to worry about logic related to your display creeping into your test setup.

A Note on Coupling

In Ember.js, templates get their properties from controllers, which decorate a model.

This means that templates know about controllers and controllers know about models, but the
reverse is not true. A model knows nothing about which (if any) controllers are decorating it, and
controller does not know which views are presenting its properties.

Controllers 141

Objects

This also means that as far as a template is concerned, all of its properties come from its controller,
and it doesn’t need to know about the model directly.

In practice, Ember.js will create a template’s controller once for the entire application, but the
controller’s model may change throughout the lifetime of the application without requiring that
the view knows anything about those mechanics.

This makes it easy to test a template in isolation by rendering it with a controller object that contains
the properties the template expects. From the template’s perspective, a controller is simply an object
that provides its data.

Representing Models

Templates are always connected to controllers, not models. This makes it easy to separate display-
specific properties from model specific properties, and to swap out the controller’s model as the user
navigates around the page.

For convenience, Ember.js provides controllers that proxy properties from their models so that you
can say {{name}} in your template rather than {{model.name}}. An Ember.ArrayController proxies
properties from an Array, and an Ember.ObjectController proxies properties from an object.

If your controller is an ArrayController, you can iterate directly over the controller using
{{#each controller}}. This keeps the template from having to know about how the controller
is implemented and makes isolation testing and refactoring easier.

Controllers 142

Storing Application Properties

Not all properties in your application need to be saved to the server. Any time you need to store
information only for the lifetime of this application run, you should store it on a controller.

For example, imagine your application has a search field that is always present. You could store a
search property on your ApplicationController, and bind the search field in the ‘ application‘
template to that property, like this:

1 <!-- application.handlebars -->

2 <header>

3 {{input type="text" value=search action="query"}}

4 </header>

5

6 {{outlet}}

1 App.ApplicationController = Ember.Controller.extend({

2 // the initial value of the `search` property

3 search: '',

4

5 actions: {

6 query: function() {

7 // the current value of the text field

8 var query = this.get('search');

9 this.transitionToRoute('search', { query: query });

10 }

11 }

12 });

The application template stores its properties and sends its actions to the ApplicationController.
In this case, when the user hits enter, the application will transition to the search route, passing the
query as a parameter.

Representing A Single Model With ObjectController

Use Ember.ObjectController to represent a singlemodel. To tell an ObjectControllerwhichmodel
to represent, set its model property in your route’s setupController method.

When a template asks an ObjectController for the value of a property, the controller looks for a
property with the same name on itself first before checking the model.

For example, imagine you are writing a music player. You have defined your SongController to
represent the currently playing song.

Controllers 143

1 App.SongController = Ember.ObjectController.extend({

2 soundVolume: 1

3 });

In the Song route, you set the model of the controller to the currently playing song:

1 App.SongRoute = Ember.Route.extend({

2 setupController: function(controller, song) {

3 controller.set('model', song);

4 }

5 });

In your template, you want to display the name of the currently playing song, as well as the volume
at which it is playing.

1 <p>

2 Song: {{name}} by {{artist}}

3 </p>

4 <p>

5 Current Volume: {{soundVolume}}

6 </p>

Because name and artist are persisted information, and thus stored on the model, the controller
looks them up there and provides them to the template.

soundVolume, however, is specific to the current user’s session, and thus stored on the controller.
The controller can return its own value without consulting the model.

The advantage of this architecture is that it is easy to get started by accessing the properties of the
model via the object controller. If, however, you need to transform a model property for a template,
there is a well-defined place to do so without adding view-specific concerns to the model.

For example, imagine we want to display the duration of the song:

1 <p>

2 Song: {{name}} by {{artist}}

3 </p>

4 <p>

5 Duration: {{duration}}

6 </p>

This is saved on the server as an integer representing the number of seconds, so our first attempt
looks like this:

Controllers 144

1 <p>

2 Song: 4 Minute Warning by Radiohead

3 </p>

4 <p>

5 Duration: 257

6 </p>

Since our users are humans and not robots, however, we’d like to display the duration as a formatted
string.

This is very easy to do by defining a computed property on the controller which transforms the
model’s value into a human-readable format for the template:

1 App.SongController = Ember.ObjectController.extend({

2 duration: function() {

3 var duration = this.get('model.duration'),

4 minutes = Math.floor(duration / 60),

5 seconds = duration % 60;

6

7 return [minutes, seconds].join(':');

8 }.property('model.duration')

9 });

Now, the output of our template is a lot friendlier:

1 <p>

2 Song: 4 Minute Warning by Radiohead

3 </p>

4 <p>

5 Duration: 4:17

6 </p>

Representing Multiple Models With ArrayController

You can use Ember.ArrayController²⁰⁴ to represent an array of models. To tell an ArrayController

which models to represent, set its model property in your route’s setupController method.

You can treat an ArrayController just like its underlying array. For example, imagine we want to
display the current playlist. In our route, we setup our SongsController to represent the songs in
the playlist:

²⁰⁴http://emberjs.com/api/classes/Ember.ArrayController.html

http://emberjs.com/api/classes/Ember.ArrayController.html
http://emberjs.com/api/classes/Ember.ArrayController.html

Controllers 145

1 App.SongsRoute = Ember.Route.extend({

2 setupController: function(controller, playlist) {

3 controller.set('model', playlist.get('songs'));

4 }

5 });

In the songs template, we can use the {{#each}} helper to display each song:

1 <h1>Playlist</h1>

2

3

4 {{#each}}

5 {{name}} by {{artist}}

6 {{/each}}

7

You can use the ArrayController to collect aggregate information about the models it represents.
For example, imagine we want to display the number of songs that are over 30 seconds long. We
can add a new computed property called longSongCount to the controller:

1 App.SongsController = Ember.ArrayController.extend({

2 longSongCount: function() {

3 var longSongs = this.filter(function(song) {

4 return song.get('duration') > 30;

5 });

6 return longSongs.get('length');

7 }.property('@each.duration')

8 });

Now we can use this property in our template:

1

2 {{#each}}

3 {{name}} by {{artist}}

4 {{/each}}

5

6

7 {{longSongCount}} songs over 30 seconds.

Sorting

The Ember.ArrayController uses the Ember.SortableMixin²⁰⁵ to allow sorting of content. There are
two properties that can be set in order to set up sorting:

²⁰⁵http://emberjs.com/api/classes/Ember.SortableMixin.html

http://emberjs.com/api/classes/Ember.SortableMixin.html
http://emberjs.com/api/classes/Ember.SortableMixin.html

Controllers 146

1 App.SongsController = Ember.ArrayController.extend({

2 sortProperties: ['name', 'artist'],

3 sortAscending: true // false for descending

4 });

Item Controller

It is often useful to specify a controller to decorate individual items in the ArrayController while
iterating over them. This can be done by creating an ObjectController:

1 App.SongController = Ember.ObjectController.extend({

2 fullName: function() {

3

4 return this.get('name') + ' by ' + this.get('artist');

5

6 }.property('name', 'artist')

7 });

Then, the ArrayController itemController property must be set to the decorating controller.

1 App.SongsController = Ember.ArrayController.extend({

2 itemController: 'song'

3 });

1 {{#each controller}}

2 {{fullName}}

3 {{/each}}

or you could setup the itemController directly in the template:

1 App.SongsController = Ember.ArrayController.extend({

2 });

1 {{#each controller itemController="song"}}

2 {{fullName}}

3 {{/each}}

Managing Dependencies Between Controllers

Sometimes, especially when nesting resources, we find ourselves needing to have some kind of
connection between two controllers. Let’s take this router as an example:

Controllers 147

1 App.Router.map(function() {

2 this.resource("post", { path: "/posts/:post_id" }, function() {

3 this.resource("comments", { path: "/comments" });

4 });

5 });

If we visit a /posts/1/comments URL, our Post model will get loaded into a PostController’s
model, which means it is not directly accessible in the CommentsController. We might however
want to display some information about it in the comments template.

To be able to do this we define our CommentsController to need the PostControllerwhich has our
desired Post model.

1 App.CommentsController = Ember.ArrayController.extend({

2 needs: "post"

3 });

This tells Ember that our CommentsController should be able to access its parent PostController,
which can be done via controllers.post (either in the template or in the controller itself).

1 <h1>Comments for {{controllers.post.title}}</h1>

2

3

4 {{#each comments}}

5 {{text}}

6 {{/each}}

7

We can also create an aliased property to give ourselves a shorter way to access the PostController
(since it is an ObjectController, we don’t need or want the Post instance directly).

1 App.CommentsController = Ember.ArrayController.extend({

2 needs: "post",

3 post: Ember.computed.alias("controllers.post")

4 });

If you want to connect multiple controllers together, you can specify an array of controller names:

Controllers 148

1 App.AnotherController = Ember.Controller.extend({

2 needs: ['post', 'comments']

3 });

For more information about dependecy injection and needs in Ember.js, see the dependency
injection guide²⁰⁶. For more information about aliases, see the API docs for aliased properties²⁰⁷.

²⁰⁶http://emberjs.com/guides/understanding-ember/dependency-injection-and-service-lookup
²⁰⁷http://emberjs.com/api/#method_computed_alias

http://emberjs.com/guides/understanding-ember/dependency-injection-and-service-lookup
http://emberjs.com/guides/understanding-ember/dependency-injection-and-service-lookup
http://emberjs.com/api/#method_computed_alias
http://emberjs.com/guides/understanding-ember/dependency-injection-and-service-lookup
http://emberjs.com/api/#method_computed_alias

Models
Introduction

Models

In Ember, every route has an associated model. This model is set by implementing a route’s model
hook, by passing the model as an argument to {{link-to}}, or by calling a route’s transitionTo()
method.

See Specifying a Route’s Model²⁰⁸ for more information on setting a route’s model.

For simple applications, you can get by using jQuery to load JSON data from a server, then use those
JSON objects as models.

However, using amodel library thatmanages findingmodels, making changes, and saving them back
to the server can dramatically simplify your code while improving the robustness and performance
of your application.

Many Ember apps use Ember Data²⁰⁹ to handle this. Ember Data is a library that integrates tightly
with Ember.js to make it easy to retrieve records from a server, cache them for performance, save
updates back to the server, and create new records on the client.

Without any configuration, Ember Data can load and save records and their relationships served
via a RESTful JSON API, provided it follows certain conventions.

If you need to integrate your Ember.js app with existing JSON APIs that do not follow strong
conventions, Ember Data is designed to be easily configurable to work with whatever data your
server returns.

Ember Data is also designed to work with streaming APIs like socket.io, Firebase, or WebSockets.
You can open a socket to your server and push changes to records into the store whenever they
occur.

Currently, Ember Data ships as a separate library from Ember.js. Until Ember Data is included
as part of the standard distribution, you can get a copy of the latest passing build from em-
berjs.com/builds²¹⁰:

• Development²¹¹
• Minified²¹²

²⁰⁸http://emberjs.com/guides/routing/specifying-a-routes-model
²⁰⁹https://github.com/emberjs/data
²¹⁰http://emberjs.com/builds
²¹¹http://builds.emberjs.com/canary/ember-data.js
²¹²http://builds.emberjs.com/canary/ember-data.min.js

http://emberjs.com/guides/routing/specifying-a-routes-model
https://github.com/emberjs/data
http://emberjs.com/builds
http://emberjs.com/builds
http://builds.emberjs.com/canary/ember-data.js
http://builds.emberjs.com/canary/ember-data.min.js
http://emberjs.com/guides/routing/specifying-a-routes-model
https://github.com/emberjs/data
http://emberjs.com/builds
http://builds.emberjs.com/canary/ember-data.js
http://builds.emberjs.com/canary/ember-data.min.js

Models 150

Core Concepts

Learning to use Ember Data is easiest once you understand some of the concepts that underpin its
design.

Store The store is the central repository of records in your application. You can think of the store
as a cache of all of the records available in your app. Both your application’s controllers and routes
have access to this shared store; when they need to display or modify a record, they will first ask
the store for it.

This instance of DS.Store is created for you automatically and is shared among all of the objects in
your application.

You will use the store to retrieve records, as well to create new ones. For example, we might want
to find an App.Person model with the ID of 1 from our route’s model hook:

1 App.IndexRoute = Ember.Route.extend({

2 model: function() {

3 return this.store.find('person', 1);

4 }

5 });

Models Amodel is a class that defines the properties and behavior of the data that you present to
the user. Anything that the user expects to see if they leave your app and come back later (or if they
refresh the page) should be represented by a model.

For example, if you were writing a web application for placing orders at a restaurant, you might
have models like Order, LineItem, and MenuItem.

Fetching orders becomes very easy:

1 this.store.find('order');

Models define the type of data that will be provided by your server. For example, a Person model
might have a firstName attribute that is a string, and a birthday attribute that is a date:

1 App.Person = DS.Model.extend({

2 firstName: DS.attr('string'),

3 birthday: DS.attr('date')

4 });

A model also describes its relationships with other objects. For example, an Order may have many
LineItems, and a LineItem may belong to a particular Order.

Models 151

1 App.Order = DS.Model.extend({

2 lineItems: DS.hasMany('lineItem')

3 });

4

5 App.LineItem = DS.Model.extend({

6 order: DS.belongsTo('order')

7 });

Models don’t have any data themselves; they just define the properties and behavior of specific
instances, which are called records.

Records A record is an instance of a model that contains data loaded from a server. Your
application can also create new records and save them back to the server.

A record is uniquely identified by its model type and id.

For example, if you were writing a contact management app, you might have a model called Person.
An individual record in your app might have a type of Person and an ID of 1 or steve-buscemi.

1 this.store.find('person', 1); // => { id: 1, name: 'steve-buscemi' }

IDs are usually assigned by the server when you save them for the first time, but you can also
generate IDs client-side.

Adapter An adapter is an object that knows about your particular server backend and is
responsible for translating requests for and changes to records into the appropriate calls to your
server.

For example, if your application asks for a person record with an ID of 1, how should Em-
ber Data load it? Is it over HTTP or a WebSocket? If it’s HTTP, is the URL /person/1 or
/resources/people/1?

The adapter is responsible for answering all of these questions. Whenever your app asks the store
for a record that it doesn’t have cached, it will ask the adapter for it. If you change a record and
save it, the store will hand the record to the adapter to send the appropriate data to your server and
confirm that the save was successful.

Serializer A serializer is responsible for turning a raw JSON payload returned from your server
into a record object.

JSON APIs may represent attributes and relationships in many different ways. For example, some
attribute names may be camelCased and others may be under_scored. Representing relationships
is even more diverse: they may be encoded as an array of IDs, an array of embedded objects, or as
foreign keys.

Models 152

When the adapter gets a payload back for a particular record, it will give that payload to the serializer
to normalize into the form that Ember Data is expecting.

While most people will use a serializer for normalizing JSON, because Ember Data treats these
payloads as opaque objects, there’s no reason they couldn’t be binary data stored in a Blob or
ArrayBuffer²¹³.

Automatic Caching The store will automatically cache records for you. If a record had already
been loaded, asking for it a second time will always return the same object instance. This minimizes
the number of round-trips to the server, and allows your application to render its UI to the user as
fast as possible.

For example, the first time your application asks the store for a person record with an ID of 1, it
will fetch that information from your server.

However, the next time your app asks for a personwith ID 1, the store will notice that it had already
retrieved and cached that information from the server. Instead of sending another request for the
same information, it will give your application the same record it had provided it the first time. This
feature—always returning the same record object, no matter how many times you look it up—is
sometimes called an identity map.

Using an identity map is important because it ensures that changes you make in one part of your UI
are propagated to other parts of the UI. It also means that you don’t have to manually keep records
in sync—you can ask for a record by ID and not have to worry about whether other parts of your
application have already asked for and loaded it.

Architecture Overview

The first time your application asks the store for a record, the store sees that it doesn’t have a local
copy and requests it from your adapter. Your adapter will go and retrieve the record from your
persistence layer; typically, this will be a JSON representation of the record served from an HTTP
server.

²¹³https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays/ArrayBuffer

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays/ArrayBuffer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays/ArrayBuffer

Models 153

Diagram showing process for finding an unloaded record

As illustrated in the diagram above, the adapter cannot always return the requested record
immediately. In this case, the adapter must make an asynchronous request to the server, and only
when that request finishes loading can the record be created with its backing data.

Because of this asynchronicity, the store immediately returns a promise from the find() method.
Similarly, any requests that the store makes to the adapter also return promises.

Once the request to the server returns with a JSON payload for the requested record, the adapter
resolves the promise it returned to the store with the JSON.

The store then takes that JSON, initializes the record with the JSON data, and resolves the promise
returned to your application with the newly-loaded record.

Models 154

Diagram showing process for finding an unloaded record after the payload has returned from the server

Let’s look at what happens if you request a record that the store already has in its cache.

Diagram showing process for finding an unloaded record after the payload has returned from the server

In this case, because the store already knew about the record, it returns a promise that it resolves
with the record immediately. It does not need to ask the adapter (and, therefore, the server) for a
copy since it already has it saved locally.

These are the core concepts you should understand to get the most out of Ember Data. The following
sections go into more depth about each of these concepts, and how to use them together.

Models 155

Defining Models

A model is a class that defines the properties and behavior of the data that you present to the user.
Anything that the user expects to see if they leave your app and come back later (or if they refresh
the page) should be represented by a model.

Make sure to include ember-data.js after ember.js

1 <script type="text/javascript" src="ember.js"></script>

2 <script type="text/javascript" src="ember-data.js"></script>

For every model in your application, create a subclass of DS.Model:

1 App.Person = DS.Model.extend();

After you have defined a model class, you can start finding and creating records of that type. When
interacting with the store, you will need to specify a record’s type using the model name. For
example, the store’s find() method expects a string as the first argument to tell it what type of
record to find:

1 store.find('person', 1);

The table below shows how model names map to model classes.

Defining Attributes

You can specify which attributes a model has by using DS.attr.

1 var attr = DS.attr;

2

3 App.Person = DS.Model.extend({

4 firstName: attr(),

5 lastName: attr(),

6 birthday: attr()

7 });

Attributes are used when turning the JSON payload returned from your server into a record, and
when serializing a record to save back to the server after it has been modified.

You can use attributes just like any other property, including as part of a computed property.
Frequently, you will want to define computed properties that combine or transform primitive
attributes.

Models 156

1 var attr = DS.attr;

2

3 App.Person = DS.Model.extend({

4 firstName: attr(),

5 lastName: attr(),

6

7 fullName: function() {

8 return this.get('firstName') + ' ' + this.get('lastName');

9 }.property('firstName', 'lastName')

10 });

For more about adding computed properties to your classes, see Computed Properties²¹⁴.

If you don’t specify the type of the attribute, it will be whatever was provided by the server. You
can make sure that an attribute is always coerced into a particular type by passing a type to attr:

1 App.Person = DS.Model.extend({

2 birthday: DS.attr('date')

3 });

The default adapter supports attribute types of string, number, boolean, and date. Custom adapters
may offer additional attribute types, and new types can be registered as transforms. See the
documentation section on the REST Adapter²¹⁵.

Please note: Ember Data serializes and deserializes dates according to ISO 8601²¹⁶. For example:
2014-05-27T12:54:01

Options

DS.attr takes an optional hash as a second parameter:

• defaultValue: Pass a string or a function to be called to set the attribute to a default value if
none is supplied.

Example

²¹⁴http://emberjs.com/guides/object-model/computed-properties
²¹⁵http://emberjs.com/guides/models/the-rest-adapter
²¹⁶http://en.wikipedia.org/wiki/ISO_8601

http://emberjs.com/guides/object-model/computed-properties
http://emberjs.com/guides/models/the-rest-adapter
http://en.wikipedia.org/wiki/ISO_8601
http://emberjs.com/guides/object-model/computed-properties
http://emberjs.com/guides/models/the-rest-adapter
http://en.wikipedia.org/wiki/ISO_8601

Models 157

1 var attr = DS.attr;

2

3 App.User = DS.Model.extend({

4 username: attr('string'),

5 email: attr('string'),

6 verified: attr('boolean', {defaultValue: false}),

7 createdAt: DS.attr('string', {

8 defaultValue: function() { return new Date(); }

9 })

10 });

Defining Relationships

Ember Data includes several built-in relationship types to help you define how your models relate
to each other.

One-to-One

To declare a one-to-one relationship between two models, use DS.belongsTo:

1 App.User = DS.Model.extend({

2 profile: DS.belongsTo('profile')

3 });

4

5 App.Profile = DS.Model.extend({

6 user: DS.belongsTo('user')

7 });

One-to-Many

To declare a one-to-many relationship between two models, use DS.belongsTo in combination with
DS.hasMany, like this:

1 App.Post = DS.Model.extend({

2 comments: DS.hasMany('comment')

3 });

4

5 App.Comment = DS.Model.extend({

6 post: DS.belongsTo('post')

7 });

Many-to-Many

To declare a many-to-many relationship between two models, use DS.hasMany:

Models 158

1 App.Post = DS.Model.extend({

2 tags: DS.hasMany('tag')

3 });

4

5 App.Tag = DS.Model.extend({

6 posts: DS.hasMany('post')

7 });

Explicit Inverses

Ember Data will do its best to discover which relationships map to one another. In the one-to-many
code above, for example, Ember Data can figure out that changing the comments relationship should
update the post relationship on the inverse because post is the only relationship to that model.

However, sometimes you may have multiple belongsTo/hasManys for the same type. You can specify
which property on the related model is the inverse using DS.hasMany’s inverse option:

1 var belongsTo = DS.belongsTo,

2 hasMany = DS.hasMany;

3

4 App.Comment = DS.Model.extend({

5 onePost: belongsTo('post'),

6 twoPost: belongsTo('post'),

7 redPost: belongsTo('post'),

8 bluePost: belongsTo('post')

9 });

10

11

12 App.Post = DS.Model.extend({

13 comments: hasMany('comment', {

14 inverse: 'redPost'

15 })

16 });

You can also specify an inverse on a belongsTo, which works how you’d expect.

Reflexive relation

When you want to define a reflexive relation, you must either explicitly define the other side, and
set the explicit inverse accordingly, and if you don’t need the other side, set the inverse to null.

Models 159

1 var belongsTo = DS.belongsTo,

2 hasMany = DS.hasMany;

3

4 App.Folder = DS.Model.extend({

5 children: hasMany('folder', {inverse: 'parent'}),

6 parent: belongsTo('folder', {inverse: 'children'})

7 });

or

1 var belongsTo = DS.belongsTo,

2

3 App.Folder = DS.Model.extend({

4 parent: belongsTo('folder', {inverse: null})

5 });

Creating Deleting Records

You can create records by calling the createRecord method on the store.

1 store.createRecord('post', {

2 title: 'Rails is Omakase',

3 body: 'Lorem ipsum'

4 });

The store object is available in controllers and routes using this.store.

Although createRecord is fairly straightforward, the only thing to watch out for is that you cannot
assign a promise as a relationship, currently.

For example, if you want to set the author property of a post, this would not work if the user with
id isn’t already loaded into the store:

1 var store = this.store;

2

3 store.createRecord('post', {

4 title: 'Rails is Omakase',

5 body: 'Lorem ipsum',

6 author: store.find('user', 1)

7 });

However, you can easily set the relationship after the promise has fulfilled:

Models 160

1 var store = this.store;

2

3 var post = store.createRecord('post', {

4 title: 'Rails is Omakase',

5 body: 'Lorem ipsum'

6 });

7

8 store.find('user', 1).then(function(user) {

9 post.set('author', user);

10 });

Deleting Records

Deleting records is just as straightforward as creating records. Just call deleteRecord() on any
instance of DS.Model. This flags the record as isDeleted and thus removes it from all() queries
on the store. The deletion can then be persisted using save(). Alternatively, you can use the
destroyRecord method to delete and persist at the same time.

1 store.find('post', 1).then(function (post) {

2 post.deleteRecord();

3 post.get('isDeleted'); // => true

4 post.save(); // => DELETE to /posts/1

5 });

6

7 // OR

8 store.find('post', 2).then(function (post) {

9 post.destroyRecord(); // => DELETE to /posts/2

10 });

Pushing Records Into The Store

One way to think about the store is as a cache of all of the records that have been loaded by your
application. If a route or a controller in your app asks for a record, the store can return it immediately
if it is in the cache. Otherwise, the store must ask the adapter to load it, which usually means a trip
over the network to retrieve it from the server.

Instead of waiting for the app to request a record, however, you can push records into the store’s
cache ahead of time.

This is useful if you have a good sense of what records the user will need next. When they click
on a link, instead of waiting for a network request to finish, Ember.js can render the new template
immediately. It feels instantaneous.

Another use case for pushing in records is if your application has a streaming connection to a
backend. If a record is created or modified, you want to update the UI immediately.

Models 161

Pushing Records

To push a record into the store, call the store’s push() method.

For example, imagine we want to preload some data into the store when the application boots for
the first time.

We can use the ApplicationRoute to do so. The ApplicationRoute is the top-most route in the route
hierarchy, and its model hook gets called once when the app starts up.

1 var attr = DS.attr;

2

3 App.Album = DS.Model.extend({

4 title: attr(),

5 artist: attr(),

6 songCount: attr()

7 });

8

9 App.ApplicationRoute = Ember.Route.extend({

10 model: function() {

11 this.store.push('album', {

12 id: 1,

13 title: "Fewer Moving Parts",

14 artist: "David Bazan",

15 songCount: 10

16 });

17

18 this.store.push('album', {

19 id: 2,

20 title: "Calgary b/w I Can't Make You Love Me/Nick Of Time",

21 artist: "Bon Iver",

22 songCount: 2

23 });

24 }

25 });

Persisting Records

Records in Ember Data are persisted on a per-instance basis. Call save() on any instance of DS.Model
and it will make a network request.

Here are a few examples:

Models 162

1 var post = store.createRecord('post', {

2 title: 'Rails is Omakase',

3 body: 'Lorem ipsum'

4 });

5

6 post.save(); // => POST to '/posts'

1 store.find('post', 1).then(function (post) {

2 post.get('title'); // => "Rails is Omakase"

3

4 post.set('title', 'A new post');

5

6 post.save(); // => PUT to '/posts/1'

7 });

Promises

save() returns a promise, so it is extremely easy to handle success and failure scenarios. Here’s a
common pattern:

1 var post = store.createRecord('post', {

2 title: 'Rails is Omakase',

3 body: 'Lorem ipsum'

4 });

5

6 var self = this;

7

8 function transitionToPost(post) {

9 self.transitionToRoute('posts.show', post);

10 }

11

12 function failure(reason) {

13 // handle the error

14 }

15

16 post.save().then(transitionToPost).catch(failure);

17

18 // => POST to '/posts'

19 // => transitioning to posts.show route

Promises even make it easy to work with failed network requests:

Models 163

1 var post = store.createRecord('post', {

2 title: 'Rails is Omakase',

3 body: 'Lorem ipsum'

4 });

5

6 var self = this;

7

8 var onSuccess = function(post) {

9 self.transitionToRoute('posts.show', post);

10 };

11

12 var onFail = function(post) {

13 // deal with the failure here

14 };

15

16 post.save().then(onSuccess, onFail);

17

18 // => POST to '/posts'

19 // => transitioning to posts.show route

You can read more about promises here²¹⁷, but here is another example showing how to retry
persisting:

1 function retry(callback, nTimes) {

2 // if the promise fails

3 return callback().catch(function(reason) {

4 // if we haven't hit the retry limit

5 if (nTimes-- > 0) {

6 // retry again with the result of calling the retry callback

7 // and the new retry limit

8 return retry(callback, nTimes);

9 }

10

11 // otherwise, if we hit the retry limit, rethrow the error

12 throw reason;

13 });

14 }

15

16 // try to save the post up to 5 times

17 retry(function() {

18 return post.save();

19 }, 5);

²¹⁷https://github.com/tildeio/rsvp.js

https://github.com/tildeio/rsvp.js
https://github.com/tildeio/rsvp.js

Models 164

Finding Records

The Ember Data store provides a simple interface for finding records of a single type through the
store object’s find method. Internally, the store uses find, findAll, and findQuery based on the
supplied arguments.

The first argument to store.find() is always the record type. The optional second argument
determines if a request is made for all records, a single record, or a query.

Finding All Records of a Type

1 var posts = this.store.find('post'); // => GET /posts

To get a list of records already loaded into the store, without making another network request, use
all instead.

1 var posts = this.store.all('post'); // => no network request

find returns a DS.PromiseArray that fulfills to a DS.RecordArray and all directly returns a
DS.RecordArray.

It’s important to note that DS.RecordArray is not a JavaScript array. It is an object that implements
Ember.Enumerable²¹⁸. This is important because, for example, if you want to retrieve records by
index, the [] notation will not work–you’ll have to use objectAt(index) instead.

Finding a Single Record

If you provide a number or string as the second argument to store.find(), Ember Data will assume
that you are passing in an ID and attempt to retrieve a record of the type passed in as the first
argument with that ID. This will return a promise that fulfills with the requested record:

1 var aSinglePost = this.store.find('post', 1); // => GET /posts/1

Querying For Records

If you provide a plain object as the second argument to find, Ember Data will make a GET request
with the object serialized as query params. This method returns DS.PromiseArray in the same way
as find with no second argument.

For example, we could search for all person models who have the name of Peter:

²¹⁸http://emberjs.com/guides/models/defining-models

http://emberjs.com/guides/models/defining-models
http://emberjs.com/guides/models/defining-models

Models 165

1 var peters = this.store.find('person', { name: "Peter" }); // => GET to /persons\

2 ?name='Peter'

Integrating with the Route’s Model Hook

As discussed in Specifying a Route’s Model²¹⁹, routes are responsible for telling their template which
model to render.

Ember.Route’s model hook supports asynchronous values out-of-the-box. If you return a promise
from the model hook, the router will wait until the promise has fulfilled to render the template.

This makes it easy to write apps with asynchronous data using Ember Data. Just return the requested
record from the model hook, and let Ember deal with figuring out whether a network request is
needed or not.

1 App.Router.map(function() {

2 this.resource('posts');

3 this.resource('post', { path: ':post_id' });

4 });

5

6 App.PostsRoute = Ember.Route.extend({

7 model: function() {

8 return this.store.find('post');

9 }

10 });

11

12 App.PostRoute = Ember.Route.extend({

13 model: function(params) {

14 return this.store.find('post', params.post_id);

15 }

16 })

Working With Records

Modifying Attributes

Once a record has been loaded, you can begin making changes to its attributes. Attributes behave
just like normal properties in Ember.js objects. Making changes is as simple as setting the attribute
you want to change:

²¹⁹http://emberjs.com/guides/models/the-rest-adapter

http://emberjs.com/guides/models/the-rest-adapter
http://emberjs.com/guides/models/the-rest-adapter

Models 166

1 var tyrion = this.store.find('person', 1);

2 // ...after the record has loaded

3 tyrion.set('firstName', "Yollo");

All of the Ember.js conveniences are available for modifying attributes. For example, you can use
Ember.Object’s incrementProperty helper:

1 person.incrementProperty('age'); // Happy birthday!

You can tell if a record has outstanding changes that have not yet been saved by checking its isDirty
property. You can also see what parts of the record were changed and what the original value was
using the changedAttributes function. changedAttributes returns an object, whose keys are the
changed properties and values are an array of values [oldValue, newValue].

1 person.get('isAdmin'); //=> false

2 person.get('isDirty'); //=> false

3 person.set('isAdmin', true);

4 person.get('isDirty'); //=> true

5 person.changedAttributes(); //=> { isAdmin: [false, true] }

At this point, you can either persist your changes via save() or you can rollback your changes.
Calling rollback() reverts all the changedAttributes to their original value.

1 person.get('isDirty'); //=> true

2 person.changedAttributes(); //=> { isAdmin: [false, true] }

3

4 person.rollback();

5

6 person.get('isDirty'); //=> false

7 person.get('isAdmin'); //=> false

8 person.changedAttributes(); //=> {}

Using Fixtures

When developing client-side applications, your servermay not have anAPI ready to develop against.
The FixtureAdapter allows you to begin developing Ember.js apps now, and switch to another
adapter when your API is ready to consume without any changes to your application code.

Models 167

Getting Started

Using the fixture adapter entails three very simple setup steps:

1. Create a new store using the fixture adapter and attach it to your app.
2. Define your model using DS.Model.extend.
3. Attach fixtures(also known as sample data) to the model’s class.

Creating a Fixture Adapter

Simply attach it as the ApplicationAdapter property on your instance of Ember.Application:

1 var App = Ember.Application.create();

2 App.ApplicationAdapter = DS.FixtureAdapter;

Define Your Model

You should refer to Defining a Model²²⁰ for a more in-depth guide on using Ember Data Models, but
for the purposes of demonstration we’ll use an example modeling people who document Ember.js.

1 App.Documenter = DS.Model.extend({

2 firstName: DS.attr('string'),

3 lastName: DS.attr('string')

4 });

Attach Fixtures to the Model Class

Attaching fixtures couldn’t be simpler. Just attach a collection of plain JavaScript objects to your
Model’s class under the FIXTURES property:

1 App.Documenter.FIXTURES = [

2 { id: 1, firstName: 'Trek', lastName: 'Glowacki' },

3 { id: 2, firstName: 'Tom' , lastName: 'Dale' }

4];

That’s it! You can now use all of methods for Finding Records²²¹ in your application. For example:

²²⁰http://emberjs.com/guides/models/defining-models
²²¹http://emberjs.com/guides/models/finding-records

http://emberjs.com/guides/models/defining-models
http://emberjs.com/guides/models/finding-records
http://emberjs.com/guides/models/defining-models
http://emberjs.com/guides/models/finding-records

Models 168

1 App.DocumenterRoute = Ember.Route.extend({

2 model: function() {

3 return this.store.find('documenter', 1); // returns a promise that will reso\

4 lve

5 // with the record representing Tre\

6 k Glowacki

7 }

8 });

Naming Conventions

Unlike the REST Adapter²²², the Fixture Adapter does not make any assumptions about the naming
conventions of your model. As you saw in the example above, if you declare the attribute as
firstName during DS.Model.extend, you use firstName to represent the same field in your fixture
data.

Importantly, you should make sure that each record in your fixture data has a uniquely identifiable
field. By default, Ember Data assumes this key is called id. Should you not provide an id field in
your fixtures, or not override the primary key, the Fixture Adapter will throw an error.

The REST Adapter

By default, your store will use DS.RESTAdapter²²³ to load and save records. The RESTAdapter
assumes that the URLs and JSON associated with each model are conventional; this means that,
if you follow the rules, you will not need to configure the adapter or write any code in order to get
started.

URL Conventions

The REST adapter is smart enough to determine the URLs it communicates with based on the name
of the model. For example, if you ask for a Post by ID:

1 store.find('post', 1).then(function(post) {

2 });

The REST adapter will automatically send a GET request to /posts/1.

The actions you can take on a record map onto the following URLs in the REST adapter:

Pluralization Customization

Irregular or uncountable pluralizations can be specified via Ember.Inflector.inflector:

²²²http://emberjs.com/guides/models/the-rest-adapter
²²³http://emberjs.com/api/data/classes/DS.RESTAdapter.html

http://emberjs.com/guides/models/the-rest-adapter
http://emberjs.com/api/data/classes/DS.RESTAdapter.html
http://emberjs.com/guides/models/the-rest-adapter
http://emberjs.com/api/data/classes/DS.RESTAdapter.html

Models 169

1 var inflector = Ember.Inflector.inflector;

2

3 inflector.irregular('formula', 'formulae');

4 inflector.uncountable('advice');

This will tell the REST adapter that requests for App.Formula requests should go to /formulae/1

instead of /formulas/1.

Endpoint Path Customization

Endpoint paths can be prefixed with a namespace by setting the namespace property on the adapter:

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 namespace: 'api/1'

3 });

Requests for App.Person would now target /api/1/people/1.

Host Customization

An adapter can target other hosts by setting the host property.

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 host: 'https://api.example.com'

3 });

Requests for App.Person would now target https://api.example.com/people/1.

JSON Conventions

When requesting a record, the REST adapter expects your server to return a JSON representation of
the record that conforms to the following conventions.

JSON Root

The primary record being returned should be in a named root. For example, if you request a record
from /people/123, the response should be nested inside a property called person:

Models 170

1 {

2 "person": {

3 "firstName": "Jeff",

4 "lastName": "Atwood"

5 }

6 }

Note: Although after destroyRecord or deleteRecord/save the adapter expects an empty object e.g.
{} to be returned from the server after destroying a record.

If you don’t have the option to change the data that the server responds with, you can override the
DS.JSONSerializer#extractDeleteRecord²²⁴, like so:

1 extractDeleteRecord: function(store, type, payload) {

2 // payload is {delete: true} and then ember data wants to go ahead and set

3 // the new properties, return null so it doesn't try to do that

4 return null;

5 }

Attribute Names

Attribute names should be camelized. For example, if you have a model like this:

1 App.Person = DS.Model.extend({

2 firstName: DS.attr('string'),

3 lastName: DS.attr('string'),

4

5 isPersonOfTheYear: DS.attr('boolean')

6 });

The JSON returned from your server should look like this:

1 {

2 "person": {

3 "firstName": "Barack",

4 "lastName": "Obama",

5 "isPersonOfTheYear": true

6 }

7 }

Irregular keys can be mapped with a custom serializer. If the JSON for the Person model has a
key of lastNameOfPerson, and the desired attribute name is simply lastName, then create a custom
Serializer for the model and override the normalizeHash property.

²²⁴http://emberjs.com/api/data/classes/DS.JSONSerializer.html#method_extractDeleteRecord

http://emberjs.com/api/data/classes/DS.JSONSerializer.html#method_extractDeleteRecord
http://emberjs.com/api/data/classes/DS.JSONSerializer.html#method_extractDeleteRecord

Models 171

1 App.Person = DS.Model.extend({

2 lastName: DS.attr('string')

3 });

4

5 App.PersonSerializer = DS.RESTSerializer.extend({

6 normalizeHash: {

7 lastNameOfPerson: function(hash) {

8 hash.lastName = hash.lastNameOfPerson;

9 delete hash.lastNameOfPerson;

10

11 return hash;

12 }

13 }

14 });

Relationships

References to other records should be done by ID. For example, if you have a model with a hasMany
relationship:

1 App.Post = DS.Model.extend({

2 comments: DS.hasMany('comment', {async: true})

3 });

The JSON should encode the relationship as an array of IDs:

1 {

2 "post": {

3 "comments": [1, 2, 3]

4 }

5 }

Comments for a post can be loaded by post.get('comments'). The REST adapter will send a GET

request to /comments?ids[]=1&ids[]=2&ids[]=3.

Any belongsTo relationships in the JSON representation should be the camelized version of the
Ember Data model’s name, with the string Id appended. For example, if you have a model:

1 App.Comment = DS.Model.extend({

2 post: DS.belongsTo('post')

3 });

The JSON should encode the relationship as an ID to another record:

Models 172

1 {

2 "comment": {

3 "post": 1

4 }

5 }

If needed these naming conventions can be overwritten by implementing the keyForRelationship
method.

1 App.ApplicationSerializer = DS.RESTSerializer.extend({

2 keyForRelationship: function(key, relationship) {

3 return key + 'Ids';

4 }

5 });

Sideloaded Relationships

To reduce the number of HTTP requests necessary, you can sideload additional records in your JSON
response. Sideloaded records live outside the JSON root, and are represented as an array of hashes:

1 {

2 "post": {

3 "id": 1,

4 "title": "Node is not omakase",

5 "comments": [1, 2, 3]

6 },

7

8 "comments": [{

9 "id": 1,

10 "body": "But is it _lightweight_ omakase?"

11 },

12 {

13 "id": 2,

14 "body": "I for one welcome our new omakase overlords"

15 },

16 {

17 "id": 3,

18 "body": "Put me on the fast track to a delicious dinner"

19 }]

20 }

Models 173

Creating Custom Transformations

In some circumstances, the built in attribute types of string, number, boolean, and date may be
inadequate. For example, a server may return a non-standard date format.

Ember Data can have new JSON transforms registered for use as attributes:

1 App.CoordinatePointTransform = DS.Transform.extend({

2 serialize: function(value) {

3 return [value.get('x'), value.get('y')];

4 },

5 deserialize: function(value) {

6 return Ember.create({ x: value[0], y: value[1] });

7 }

8 });

9

10 App.Cursor = DS.Model.extend({

11 position: DS.attr('coordinatePoint')

12 });

When coordinatePoint is received from the API, it is expected to be an array:

1 {

2 cursor: {

3 position: [4,9]

4 }

5 }

But once loaded on a model instance, it will behave as an object:

1 var cursor = App.Cursor.find(1);

2 cursor.get('position.x'); //=> 4

3 cursor.get('position.y'); //=> 9

If position is modified and saved, it will pass through the serialize function in the transform and
again be presented as an array in JSON.

Connecting to an HTTP Server

If your Ember application needs to load JSON data from an HTTP server, this guide will walk you
through the process of configuring Ember Data to load records in whatever format your server
returns.

Models 174

The store uses an object called an adapter to know how to communicate over the network. By
default, the store will use DS.RESTAdapter, an adapter that communicates with an HTTP server by
transmitting JSON via XHR.

This guide is divided into two sections. The first section covers what the default behavior of the
adapter is, including what URLs it will request records from and what format it expects the JSON
to be in.

The second section covers how to override these default settings to customize things like which
URLs data is requested from and how the JSON data is structured.

URL Conventions

The REST adapter uses the name of the model to determine what URL to send JSON to.

For example, if you ask for an App.Photo record by ID:

1 App.PhotoRoute = Ember.Route.extend({

2 model: function(params) {

3 return this.store.find('photo', params.photo_id);

4 }

5 });

The REST adapter will automatically send a GET request to /photos/1.

The actions you can take on a record map onto the following URLs in the REST adapter:

JSON Conventions

Given the following models:

1 App.Post = DS.Model.extend({

2 title: DS.attr(),

3 comments: DS.hasMany('comment'),

4 user: DS.belongsTo('user')

5 });

6

7 App.Comment = DS.Model.extend({

8 body: DS.attr()

9 });

Ember Data expects that a GET request to /posts/1 would return the JSON in the following format:

Models 175

1 {

2 "post": {

3 "id": 1,

4 "title": "Rails is omakase",

5 "comments": ["1", "2"],

6 "user" : "dhh"

7 },

8

9 "comments": [{

10 "id": "1",

11 "body": "Rails is unagi"

12 }, {

13 "id": "2",

14 "body": "Omakase O_o"

15 }]

16 }

To quickly prototype a model and see the expected JSON, try using the Ember Data Model Maker²²⁵
by Andy Crum.

Customizing the Adapter

To customize the REST adapter, define a subclass of DS.RESTAdapter and name it App.ApplicationAdapter.
You can then override its properties and methods to customize how records are retrieved and saved.

Customizing a Specific Model

It’s entirely possible that you need to define options for just onemodel instead of an application-wide
customization. In that case, you can create an adapter named after the model you are specifying:

1 App.PostAdapter = DS.RESTAdapter.extend({

2 namespace: 'api/v2',

3 host: 'https://api.example2.com'

4 });

5

6 App.PhotoAdapter = DS.RESTAdapter.extend({

7 namespace: 'api/v1',

8 host: 'https://api.example.com'

9 });

This allows you to easily connect to multiple API versions simultaneously or interact with different
domains on a per model basis.

²²⁵http://andycrum.github.io/ember-data-model-maker/

http://andycrum.github.io/ember-data-model-maker/
http://andycrum.github.io/ember-data-model-maker/

Models 176

Customizing URLs

URL Prefix

If your JSON API lives somewhere other than on the host root, you can set a prefix that will be
added to all requests.

For example, if you are using a versioned JSON API, a request for a particular person might go to
/api/v1/people/1.

In that case, set namespace property to api/v1.

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 namespace: 'api/v1'

3 });

Requests for a person with ID 1 would now go to /api/v1/people/1.

URL Host

If your JSON API runs on a different domain than the one serving your Ember app, you can change
the host used to make HTTP requests.

Note that in order for this to work, you will need to be using a browser that supports CORS²²⁶, and
your server will need to be configured to send the correct CORS headers.

To change the host that requests are sent to, set the host property:

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 host: 'https://api.example.com'

3 });

Requests for a person with ID 1 would now target https://api.example.com/people/1.

Custom HTTP Headers

Some APIs require HTTP headers, e.g. to provide an API key. Arbitrary headers can be set as
key/value pairs on the RESTAdapter’s headers property and Ember Data will send them along with
each ajax request.

For Example

²²⁶http://www.html5rocks.com/en/tutorials/cors/

http://www.html5rocks.com/en/tutorials/cors/
http://www.html5rocks.com/en/tutorials/cors/

Models 177

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 headers: {

3 'API_KEY': 'secret key',

4 'ANOTHER_HEADER': 'Some header value'

5 }

6 });

Requests for any resource will include the following HTTP headers.

1 ANOTHER_HEADER: Some header value

2 API_KEY: secret key

Handling Metadata

Along with the records returned from your store, you’ll likely need to handle some kind of metadata.
Metadata is data that goes along with a specific model or type instead of a record.

Pagination is a common example of using metadata. Imagine a blog with far more posts than you
can display at once. You might query it like so:

1 var result = this.store.find("post", {

2 limit: 10,

3 offset: 0

4 });

To get different pages of data, you’d simply change your offset in increments of 10. So far, so good.
But how do you know how many pages of data you have? Your server would need to return the
total number of records as a piece of metadata.

By default, Ember Data’s JSON deserializer looks for a meta key:

1 {

2 "post": {

3 "id": 1,

4 "title": "Progressive Enhancement is Dead",

5 "comments": ["1", "2"],

6 "links": {

7 "user": "/people/tomdale"

8 },

9 // ...

10 },

11

Models 178

12 "meta": {

13 "total": 100

14 }

15 }

The metadata for a specific type is then set to the contents of meta. You can access it either with
store.metadataFor, which is updated any time any query is made against the same type:

1 var meta = this.store.metadataFor("post");

Or you can access the metadata just for this query:

1 var meta = result.get("content.meta");

Now, meta.total can be used to calculate how many pages of posts you’ll have.

You can also customize metadata extraction by overriding the extractMetamethod. For example, if
instead of a meta object, your server simply returned:

1 {

2 "post": [

3 // ...

4],

5 "total": 100

6 }

You could extract it like so:

1 App.ApplicationSerializer = DS.RESTSerializer.extend({

2 extractMeta: function(store, type, payload) {

3 if (payload && payload.total) {

4 store.metaForType(type, { total: payload.total }); // sets the metadata f\

5 or "post"

6 delete payload.total; // keeps ember data from trying to parse "total" as\

7 a record

8 }

9 }

10 });

Models 179

Customizing Adpters

In Ember Data, the logic for communicating with a backend data store lives in the Adapter. Ember
Data’s Adapter has some built-in assumptions of how a REST API²²⁷ should look. If your backend
conventions differ from these assumptions Ember Data makes it easy to change its functionality by
swapping out or extending the default Adapter.

Some reasons for customizing an Adapter include using underscores_case in your urls, using a
medium other than REST to communicate with your backend API or even using a local backend²²⁸.

Extending Adapters is a natural process in Ember Data. Ember takes the position that you should
extend an adapter to add different functionality instead of adding a flag. This results in code that
is more testable, easier to understand and reduces bloat for people who may want to subclass your
adapter.

If your backend has some consistent rules you can define an ApplicationAdapter. The ApplicationAdapter
will get priority over the default Adapter, however it will still be superseded by model specific
Adapters.

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 // Application specific overrides go here

3 });

If you have one model that has exceptional rules for communicating with its backend than the others
you can create a Model specific Adapter by naming an adapter “ModelName” + “Adapter”.

1 App.PostAdapter = DS.RESTAdapter.extend({

2 namespace: 'api/v1'

3 });

By default Ember Data comes with several builtin adapters. Feel free to use these adapters as a
starting point for creating your own custom adapter.

• DS.Adapter²²⁹ is the basic adapter with no functionality. It is generally a good starting point
if you want to create an adapter that is radically different from the other Ember adapters.

• DS.FixtureAdapter²³⁰ is an adapter that loads records from memory. Its primarily used for
development and testing.

²²⁷http://jsonapi.org/
²²⁸https://github.com/rpflorence/ember-localstorage-adapter
²²⁹http://emberjs.com/api/data/classes/DS.Adapter.html
²³⁰http://emberjs.com/api/data/classes/DS.FixtureAdapter.html

http://jsonapi.org/
https://github.com/rpflorence/ember-localstorage-adapter
http://emberjs.com/api/data/classes/DS.Adapter.html
http://emberjs.com/api/data/classes/DS.FixtureAdapter.html
http://jsonapi.org/
https://github.com/rpflorence/ember-localstorage-adapter
http://emberjs.com/api/data/classes/DS.Adapter.html
http://emberjs.com/api/data/classes/DS.FixtureAdapter.html

Models 180

• DS.RESTAdapter²³¹ is the most commonly extended adapter. The RESTAdapter allows your
store to communicate with an HTTP server by transmitting JSON via XHR. Most Ember.js
apps that consume a JSON API should use the REST adapter.

• DS.ActiveModelAdapter²³² is a specialized version of the RESTAdapter that is set up to work
out of the box with Rails-style REST APIs.

Customizing the RESTAdapter

The DS.RESTAdapter²³³ is the most commonly extended adapter that ships with Ember Data. It has
a handful of hooks that are commonly used to extend it to work with non-standard backends.

Endpoint Path Customization The namespace property can be used to prefix requests with a
specific url namespace.

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 namespace: 'api/1'

3 });

Requests for App.Person would now target /api/1/people/1.

Host Customization By default the adapter will target the current domain. If you would like to
specify a new domain you can do so by setting the host property on the adapter.

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 host: 'https://api.example.com'

3 });

Requests for App.Person would now target https://api.example.com/people/1.

Path Customization By default the RESTAdapter will attempt to pluralize and camelCase the
model name to generate the path name. If this convention does not conform to your backend you
can override the pathForType method.

For example, if you did not want to pluralize model names and needed underscore_case instead of
camelCase you could override the pathForType method like this:

²³¹http://emberjs.com/api/data/classes/DS.RESTAdapter.html
²³²http://emberjs.com/api/data/classes/DS.ActiveModelAdapter.html
²³³http://emberjs.com/api/data/classes/DS.RESTAdapter.html

http://emberjs.com/api/data/classes/DS.RESTAdapter.html
http://emberjs.com/api/data/classes/DS.ActiveModelAdapter.html
http://emberjs.com/api/data/classes/DS.RESTAdapter.html
http://emberjs.com/api/data/classes/DS.RESTAdapter.html
http://emberjs.com/api/data/classes/DS.ActiveModelAdapter.html
http://emberjs.com/api/data/classes/DS.RESTAdapter.html

Models 181

1 App.ApplicationAdapter = DS.RESTAdapter.extend({

2 pathForType: function(type) {

3 return Ember.String.underscore(type);

4 }

5 });

Requests for App.Person would now target /person/1. Requests for App.UserProfile would now
target /user_profile/1.

Authoring Adapters The defaultSerializer property can be used to specify the serializer that
will be used by this adapter. This is only used when a model specific serializer or ApplicationSeri-
alizer are not defined.

In an application, it is often easier to specify an ApplicationSerializer. However, if you are the
author of a community adapter it is important to remember to set this property to ensure Ember
does the right thing in the case a user of your adapter does not specify an ApplicationSerializer.

1 MyCustomAdapterAdapter = DS.RESTAdapter.extend({

2 defaultSerializer: '-default'

3 });

Community Adapters

If none of the builtin Ember Data Adapters work for your backend, be sure to check out some of the
community maintained Ember Data Adapters. Some good places to look for Ember Data Adapters
include:

• GitHub²³⁴
• Bower²³⁵

Frequently Asked Questions

Should I use a query or a filter to search records?

It depends on how many records you want to search and whether they have been loaded into the
store.

Queries are useful for doing searches of hundreds, thousands, or even millions of records. You just
hand the search options to your server, and it is responsible for handing you back the list of records

²³⁴https://github.com/search?q=ember+data+adapter&ref=cmdform
²³⁵http://bower.io/search/?q=ember-data-

https://github.com/search?q=ember+data+adapter&ref=cmdform
http://bower.io/search/?q=ember-data-
https://github.com/search?q=ember+data+adapter&ref=cmdform
http://bower.io/search/?q=ember-data-

Models 182

that match. Because the response from the server includes the ID of all of the records that matched,
it doesn’t matter if the store hadn’t loaded them previously; it sees that they are not in the cache
and can request the records by ID if necessary.

The downside of queries is that they do not live update, they are slower, and they require that your
server support the kind of queries that you wish to perform.

Because the server decides which records match the query, not the store, queries do not live update.
If you want to update them, you must manually call reload() and wait for the server to respond. If
you create a new record on the client, it will not show up in the results until you both save the new
record to the server and reload the query results.

Because the store must confer with your server to determine the results of a query, it necessitates
a network request. This can feel slow to users, especially if they are on a slow connection or your
server is slow to respond. The typical speed of JavaScript web applications can heighten the perceived
slowness when the server must be consulted.

Lastly, performing queries requires collaboration between the store and your server. By default,
Ember Data will send the search options that you pass as the body of an HTTP request to your
server. If your server does not support requests in this format, you will need to either change your
server to do so, or customize how queries are sent by creating a custom adapter.

Filters, on the other hand, perform a live search of all of the records in the store’s cache. As soon as
a new record is loaded into the store, the filter will check to see if the record matches, and if so, add
it to the array of search results. If that array is displayed in a template, it will update automatically.

Filters also take into account newly created records that have not been saved, and records that have
been modified but not yet saved. If you want records to show up in search results as soon as they
are created or modified on the client, you should use a filter.

Keep in mind that records will not show up in a filter if the store doesn’t know about them. You can
ensure that a record is in the store by using the store’s push() method.

There is also a limit to how many records you can reasonably keep in memory and search before
you start hitting performance issues.

Finally, keep in mind that you can combine queries and filters to take advantage of their respective
strengths and weaknesses. Remember that records returned by a query to the server are cached in
the store. You can use this fact to perform a filter, passing it a query that starts matching records
into the store, and a filter function that matches the same records.

This will offload searching all of the possible records to the server, while still creating a live updating
list that includes records created and modified on the client.

Models 183

1 App.PostsFavoritedRoute = Ember.Route.extend({

2 model: function() {

3 var store = this.store;

4

5 // Create a filter for all favorited posts that will be displayed in

6 // the template. Any favorited posts that are already in the store

7 // will be displayed immediately;

8 // Kick off a query to the server for all posts that

9 // the user has favorited. As results from the query are

10 // returned from the server, they will also begin to appear.

11 return store.filter('post', { favorited: true }, function(post) {

12 return post.get('isFavorited');

13 });

14 }

15 });

How do I inform Ember Data about new records created on the backend?

When you request a record using Ember Data’s store.findmethod, Ember will automatically load
the data into the store. This allows Ember to avoid the latency of making a round trip to the backend
next time that record is requested. Additionally, loading a record into the store will update any
RecordArrays (e.g. the result of store.filter or store.all) that should include that record. This
means any data bindings or computed properties that depend on the RecordArraywill automatically
be synced to include the new or updated record values.

Some applications may want to add or update records in the store without requesting the record via
store.find. To accomplish this you can use the DS.Store’s push, pushPayload, or updatemethods.
This is useful for web applications that have a channel (such as SSE²³⁶ or Web Sockets²³⁷) to notify
it of new or updated records on the backend.

push²³⁸ is the simplest way to load records to Ember Data’s store. When using push it is important
to remember to deserialize the JSON object before pushing it into the store. push only accepts one
record at a time. If you would like to load an array of records to the store you can call pushMany²³⁹.

²³⁶http://dev.w3.org/html5/eventsource/
²³⁷http://www.w3.org/TR/2009/WD-websockets-20091222/
²³⁸http://emberjs.com/api/data/classes/DS.Store.html#method_push
²³⁹http://emberjs.com/api/data/classes/DS.Store.html#method_pushMany

http://dev.w3.org/html5/eventsource/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://emberjs.com/api/data/classes/DS.Store.html#method_push
http://emberjs.com/api/data/classes/DS.Store.html#method_pushMany
http://dev.w3.org/html5/eventsource/
http://www.w3.org/TR/2009/WD-websockets-20091222/
http://emberjs.com/api/data/classes/DS.Store.html#method_push
http://emberjs.com/api/data/classes/DS.Store.html#method_pushMany

Models 184

1 socket.on('message', function (message) {

2 var type = store.modelFor(message.model);

3 var serializer = store.serializerFor(type.typeKey);

4 var record = serializer.extractSingle(store, type, message.data);

5 store.push(message.model, record);

6 });

pushPayload²⁴⁰ is a convenience wrapper for store#push that will deserialize payloads if the model’s
Serializer implements a pushPayloadmethod. It is important to note this method will not work with
the JSONSerializer because it does not implement a pushPayload method.

1 socket.on('message', function (message) {

2 store.pushPayload(message.model, message.data);

3 });

update²⁴¹ works like a push except it can handle partial attributes without overwriting the existing
record properties. This method is useful if your web application only receives notifications of the
changed attributes on a model. Like push it is important to remember to deserialize the JSON object
before calling update.

1 socket.on('message', function (message) {

2 var hash = message.data;

3 var type = store.modelFor(message.model);

4 var fields = Ember.get(type, 'fields');

5 fields.forEach(function(field) {

6 var payloadField = Ember.String.underscore(field);

7 if (field === payloadField) { return; }

8 hash[field] = hash[payloadField];

9 delete hash[payloadField];

10 });

11 store.push(message.model, hash);

12 });

²⁴⁰http://emberjs.com/api/data/classes/DS.Store.html#method_pushPayload
²⁴¹http://emberjs.com/api/data/classes/DS.Store.html#method_update

http://emberjs.com/api/data/classes/DS.Store.html#method_pushPayload
http://emberjs.com/api/data/classes/DS.Store.html#method_update
http://emberjs.com/api/data/classes/DS.Store.html#method_pushPayload
http://emberjs.com/api/data/classes/DS.Store.html#method_update

Views
Introduction

Because Handlebars templates in Ember.js are so powerful, the majority of your application’s user
interface will be described using them. If you are coming from other JavaScript libraries, you may
be surprised at how few views you have to create.

Views in Ember.js are typically only created for the following reasons:

• When you need sophisticated handling of user events
• When you want to create a re-usable component

Often, both of these requirements will be present at the same time.

Event Handling

The role of the view in an Ember.js application is to translate primitive browser events into events
that have meaning to your application.

For example, imagine you have a list of todo items. Next to each todo is a button to delete that item:

Todo List

The view is responsible for turning a primitive event (a click) into a semantic event : delete this
todo! These semantic events are first sent up to the controller, or if no method is defined there, your
application’s router, which is responsible for reacting to the event based on the current state of the
application.

Views 186

Todo List

Defining A View

You can use Ember.View to render a Handlebars template and insert it into the DOM.

To tell the viewwhich template to use, set its templateName property. For example, if I had a <script>
tag like this:

1 <html>

2 <head>

3 <script type="text/x-handlebars" data-template-name="say-hello">

4 Hello, {{view.name}}

5 </script>

6 </head>

7 </html>

I would set the templateName property to "say-hello".

1 var view = Ember.View.create({

2 templateName: 'say-hello',

3 name: "Bob"

4 });

Note: For the remainder of the guide, the templateName property will be omitted from most
examples. You can assume that if we show a code sample that includes an Ember.View and a
Handlebars template, the view has been configured to display that template via the templateName
property.

You can append views to the document by calling appendTo:

1 view.appendTo('#container');

As a shorthand, you can append a view to the document body by calling append:

Views 187

1 view.append();

To remove a view from the document, call remove:

1 view.remove();

Handling Events

Instead of having to register event listeners on elements you’d like to respond to, simply implement
the name of the event you want to respond to as a method on your view.

For example, imagine we have a template like this:

1 {{#view "clickable"}}

2 This is a clickable area!

3 {{/view}}

Let’s implement App.ClickableView such that when it is clicked, an alert is displayed:

1 App.ClickableView = Ember.View.extend({

2 click: function(evt) {

3 alert("ClickableView was clicked!");

4 }

5 });

Events bubble up from the target view to each parent view in succession, until the root view. These
values are read-only. If you want to manually manage views in JavaScript (instead of creating them
using the {{view}} helper in Handlebars), see the Ember.ContainerView documentation below.

Sending Events

To have the click event from App.ClickableView affect the state of your application, simply send
an event to the view’s controller:

Views 188

1 App.ClickableView = Ember.View.extend({

2 click: function(evt) {

3 this.get('controller').send('turnItUp', 11);

4 }

5 });

6 ````

7

8 If the controller has an action handler called `turnItUp`, it will be called:

9

10

11 ````javascript

12 App.PlaybackController = Ember.ObjectController.extend({

13 actions: {

14 turnItUp: function(level){

15 //Do your thing

16 }

17 }

18 });

19 ````

20

21 If it doesn't, the message will be passed to the current route:

22

23 ````javascript

24 App.PlaybackRoute = Ember.Route.extend({

25 actions: {

26 turnItUp: function(level){

27 //This won't be called if it's defined on App.PlaybackController

28 }

29 }

30 });

31 ````

32

33 To see a full listing of the `Ember.View` built-in events, see the

34 documentation section on [Event Names](http://emberjs.com/api/classes/Ember.View\

35 .html#toc_event-names).

36

37 ## Adding Layouts to Views

38

39 Views can have a secondary template that wraps their main template. Like templat\

40 es,

41 layouts are Handlebars templates that will be inserted inside the

42 view's tag.

Views 189

43

44 To tell a view which layout template to use, set its `layoutName` property.

45

46 To tell the layout template where to insert the main template, use the Handlebar\

47 s `{{yield}}` helper.

48 The HTML contents of a view's rendered `template` will be inserted where the `{{\

49 yield}}` helper is.

50

51 First, you define the following layout template:

52

53 ```html

54 <script type="text/x-handlebars" data-template-name="my_layout">

55 <div class="content-wrapper">

56 {{yield}}

57 </div>

58 </script>

And then the following main template:

1 <script type="text/x-handlebars" data-template-name="my_content">

2 Hello, {{view.name}}!

3 </script>

Finally, you define a view, and instruct it to wrap the template with the defined layout:

1 AViewWithLayout = Ember.View.extend({

2 name: 'Teddy',

3 layoutName: 'my_layout',

4 templateName: 'my_content'

5 });

This will result in view instances containing the following HTML

1 <div class="content-wrapper">

2 Hello, Teddy!

3 </div>

Applying Layouts in Practice

Layouts are extremely useful when you have a view with a common wrapper and behavior, but its
main template might change. One possible scenario is a Popup View.

You can define your popup layout template:

Views 190

1 <script type="text/x-handlebars" data-template-name="popup">

2 <div class="popup">

3 <button class="popup-dismiss">x</button>

4 <div class="popup-content">

5 {{yield}}

6 </div>

7 </div>

8 </script>

Then define your popup view:

1 App.PopupView = Ember.View.extend({

2 layoutName: 'popup'

3 });

Now you can re-use your popup with different templates:

1 {{#view "popup"}}

2 <form>

3 <label for="name">Name:</label>

4 <input id="name" type="text" />

5 </form>

6 {{/view}}

7

8 {{#view "popup"}}

9 <p> Thank you for signing up! </p>

10 {{/view}}

Customizing A Views Element

A view is represented by a single DOM element on the page. You can change what kind of element
is created by changing the tagName property.

1 App.MyView = Ember.View.extend({

2 tagName: 'span'

3 });

You can also specify which class names are applied to the view by setting its classNames property
to an array of strings:

Views 191

1 App.MyView = Ember.View.extend({

2 classNames: ['my-view']

3 });

If you want class names to be determined by the state of properties on the view, you can use class
name bindings. If you bind to a Boolean property, the class namewill be added or removed depending
on the value:

1 App.MyView = Ember.View.extend({

2 classNameBindings: ['isUrgent'],

3 isUrgent: true

4 });

This would render a view like this:

1 <div class="ember-view is-urgent">

If isUrgent is changed to false, then the is-urgent class name will be removed.

By default, the name of the Boolean property is dasherized. You can customize the class name applied
by delimiting it with a colon:

1 App.MyView = Ember.View.extend({

2 classNameBindings: ['isUrgent:urgent'],

3 isUrgent: true

4 });

This would render this HTML:

1 <div class="ember-view urgent">

Besides the custom class name for the value being true, you can also specify a class name which is
used when the value is false:

1 App.MyView = Ember.View.extend({

2 classNameBindings: ['isEnabled:enabled:disabled'],

3 isEnabled: false

4 });

This would render this HTML:

Views 192

1 <div class="ember-view disabled">

You can also specify to only add a class when the property is false by declaring classNameBindings
like this:

1 App.MyView = Ember.View.extend({

2 classNameBindings: ['isEnabled::disabled'],

3 isEnabled: false

4 });

This would render this HTML:

1 <div class="ember-view disabled">

If the isEnabled property is set to true, no class name is added:

1 <div class="ember-view">

If the bound value is a string, that value will be added as a class name without modification:

1 App.MyView = Ember.View.extend({

2 classNameBindings: ['priority'],

3 priority: 'highestPriority'

4 });

This would render this HTML:

1 <div class="ember-view highestPriority">

Attribute Bindings on a View

You can bind attributes to the DOM element that represents a view by using attributeBindings:

1 App.MyView = Ember.View.extend({

2 tagName: 'a',

3 attributeBindings: ['href'],

4 href: "http://emberjs.com"

5 });

You can also bind these attributes to differently named properties:

Views 193

1 App.MyView = Ember.View.extend({

2 tagName: 'a',

3 attributeBindings: ['customHref:href'],

4 customHref: "http://emberjs.com"

5 });

Customizing a View’s Element from Handlebars

When you append a view, it creates a new HTML element that holds its content. If your view has
any child views, they will also be displayed as child nodes of the parent’s HTML element.

By default, new instances of Ember.View create a <div> element. You can override this by passing a
tagName parameter:

1 {{view "info" tagName="span"}}

You can also assign an ID attribute to the view’s HTML element by passing an id parameter:

1 {{view "info" id="info-view"}}

This makes it easy to style using CSS ID selectors:

1 /** Give the view a red background. **/

2 #info-view {

3 background-color: red;

4 }

You can assign class names similarly:

1 {{view "info" class="info urgent"}}

You can bind class names to a property of the view by using classBinding instead of class. The
same behavior as described in bind-attr applies:

1 App.AlertView = Ember.View.extend({

2 priority: "p4",

3 isUrgent: true

4 });

Views 194

1 {{view "alert" classBinding="isUrgent priority"}}

This yields a view wrapper that will look something like this:

1 <div id="ember420" class="ember-view is-urgent p4"></div>

Built-In Views

Ember comes pre-packaged with a set of views for building a basic controls like text inputs, check
boxes, and select lists. Usually, these views will be used via the input helpers²⁴². However, the base
views may be helpful in creating custom form behaviors.

• Ember.Checkbox²⁴³
• Ember.TextField²⁴⁴
• Ember.TextArea²⁴⁵

For example, here we have created a custom text field that toggles a dirty property:

1 // {{view "myText" value=name inputDidChange=nameDidChange}}

2 App.MyText = Ember.TextField.extend({

3 inputDidChange: false,

4 change: function() {

5 this.set('inputDidChange', true);

6 }

7 });

Ember itself provides one additional view not covered by the input helpers, and this is the select box
view.

• Ember.Select²⁴⁶

This class can also be customized by extending it. To use the select view bundled with Ember, call
it via the view helper:

²⁴²http://emberjs.com/guides/templates/input-helpers/
²⁴³http://emberjs.com/api/classes/Ember.Checkbox.html
²⁴⁴http://emberjs.com/api/classes/Ember.TextField.html
²⁴⁵http://emberjs.com/api/classes/Ember.TextArea.html
²⁴⁶http://emberjs.com/api/classes/Ember.Select.html

http://emberjs.com/guides/templates/input-helpers/
http://emberjs.com/api/classes/Ember.Checkbox.html
http://emberjs.com/api/classes/Ember.TextField.html
http://emberjs.com/api/classes/Ember.TextArea.html
http://emberjs.com/api/classes/Ember.Select.html
http://emberjs.com/guides/templates/input-helpers/
http://emberjs.com/api/classes/Ember.Checkbox.html
http://emberjs.com/api/classes/Ember.TextField.html
http://emberjs.com/api/classes/Ember.TextArea.html
http://emberjs.com/api/classes/Ember.Select.html

Views 195

1 {{view Ember.Select content=people

2 optionLabelPath="content.fullName"

3 optionValuePath="content.id"

4 prompt="Pick a person:"

5 selection=selectedPerson}}

The select view is extremely feature-rich, and may perform badly when rendering many items. Due
to this, it has not yet been converted into an component or helper like other inputs.

Manually Managing View Hierachy

Ember.ContainerView

As you probably know by now, views usually create their child views by using the {{view}} helper.
However, it is sometimes useful tomanually manage a view’s child views. Ember.ContainerView²⁴⁷
is the way to do just that.

As you programmatically add or remove views to a ContainerView, those views’ rendered HTML
are added or removed from the DOM to match.

1 var container = Ember.ContainerView.create();

2 container.append();

3

4 var firstView = App.FirstView.create(),

5 secondView = App.SecondView.create();

6

7 container.pushObject(firstView);

8 container.pushObject(secondView);

9

10 // When the rendering completes, the DOM

11 // will contain a `div` for the ContainerView

12 // and nested inside of it, a `div` for each of

13 // firstView and secondView.

Defining the Initial Views of a Container View

There are a few ways to specify which initial child views a ContainerView should render. The most
straight-forward way is to add them in init:

²⁴⁷/api/classes/Ember.ContainerView.html

/api/classes/Ember.ContainerView.html
/api/classes/Ember.ContainerView.html

Views 196

1 var container = Ember.ContainerView.create({

2 init: function() {

3 this._super();

4 this.pushObject(App.FirstView.create());

5 this.pushObject(App.SecondView.create());

6 }

7 });

8

9 container.objectAt(0).toString(); //=> '<App.FirstView:ember123>'

10 container.objectAt(1).toString(); //=> '<App.SecondView:ember124>'

As a shorthand, you can specify a childViews property that will be consulted on instantiation of
the ContainerView also. This example is equivalent to the one above:

1 var container = Ember.ContainerView.extend({

2 childViews: [App.FirstView, App.SecondView]

3 });

4

5 container.objectAt(0).toString(); //=> '<App.FirstView:ember123>'

6 container.objectAt(1).toString(); //=> '<App.SecondView:ember124>'

Another bit of syntactic sugar is available as an option as well: specifying string names in the
childViews property that correspond to properties on the ContainerView. This style is less intuitive
at first but has the added bonus that each named propertywill be updated to reference its instantiated
child view:

1 var container = Ember.ContainerView.create({

2 childViews: ['firstView', 'secondView'],

3 firstView: App.FirstView,

4 secondView: App.SecondView

5 });

6

7 container.objectAt(0).toString(); //=> '<App.FirstView:ember123>'

8 container.objectAt(1).toString(); //=> '<App.SecondView:ember124>'

9

10 container.get('firstView').toString(); //=> '<App.FirstView:ember123>'

11 container.get('secondView').toString(); //=> '<App.SecondView:ember124>'

It Feels Like an Array Because it is an Array

You may have noticed that some of these examples use pushObject to add a child view, just like you
would interact with an Ember array. Ember.ContainerView²⁴⁸ gains its collection-like behavior by

²⁴⁸/api/classes/Ember.ContainerView.html

/api/classes/Ember.ContainerView.html
/api/classes/Ember.ContainerView.html

Views 197

mixing in Ember.MutableArray²⁴⁹. That means that you can manipulate the collection of views very
expressively, using methods like pushObject, popObject, shiftObject, unshiftObject, insertAt,
removeAt, or any other method you would use to interact with an Ember array.

²⁴⁹/api/classes/Ember.MutableArray.html

/api/classes/Ember.MutableArray.html
/api/classes/Ember.MutableArray.html

Enumerables
Enumerables

In Ember.js, an Enumerable is any object that contains a number of child objects, and which allows
you to workwith those children using the Ember.Enumerable²⁵⁰ API. Themost common Enumerable
in the majority of apps is the native JavaScript array, which Ember.js extends to conform to the
Enumerable interface.

By providing a standardized interface for dealing with enumerables, Ember.js allows you to
completely change the way your underlying data is stored without having to modify the other parts
of your application that access it.

For example, you might display a list of items from fixture data during development. If you switch
the underlying data from synchronous fixtures to an array that fetches data from the server lazily,
your view, template and controller code do not change at all.

The Enumerable API follows ECMAScript specifications as much as possible. This minimizes
incompatibility with other libraries, and allows Ember.js to use the native browser implementations
in arrays where available.

For instance, all Enumerables support the standard forEach method:

1 [1,2,3].forEach(function(item) {

2 console.log(item);

3 });

4

5 //=> 1

6 //=> 2

7 //=> 3

In general, Enumerable methods, like forEach, take an optional second parameter, which will
become the value of this in the callback function:

²⁵⁰http://emberjs.com/api/classes/Ember.Enumerable.html

http://emberjs.com/api/classes/Ember.Enumerable.html
http://emberjs.com/api/classes/Ember.Enumerable.html

Enumerables 199

1 var array = [1,2,3];

2

3 array.forEach(function(item) {

4 console.log(item, this.indexOf(item));

5 }, array)

6

7 //=> 1 0

8 //=> 2 1

9 //=> 3 2

Enumerables in Ember.js

Usually, objects that represent lists implement the Enumerable interface. Some examples:

• Array - Ember extends the native JavaScript Arraywith the Enumerable interface (unless you
disable prototype extensions.²⁵¹)

• Ember.ArrayController - A controller that wraps an underlying array and adds additional
functionality for the view layer.

• Ember.Set - A data structure that can efficiently answer whether it includes an object.

API Overview

In this guide, we’ll explore some of the most common Enumerable conveniences. For the full list,
please see the Ember.Enumerable API reference documentation.²⁵²

Iterating Over an Enumerable

To enumerate all the values of an enumerable object, use the forEach method:

1 var food = ["Poi", "Ono", "Adobo Chicken"];

2

3 food.forEach(function(item, index) {

4 console.log('Menu Item %@: %@'.fmt(index+1, item));

5 });

6

7 // Menu Item 1: Poi

8 // Menu Item 2: Ono

9 // Menu Item 3: Adobo Chicken

Making an Array Copy

You can make a native array copy of any object that implements Ember.Enumerable by calling the
toArray() method:

²⁵¹http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/
²⁵²http://emberjs.com/api/classes/Ember.Enumerable.html

http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/
http://emberjs.com/api/classes/Ember.Enumerable.html
http://emberjs.com/guides/configuring-ember/disabling-prototype-extensions/
http://emberjs.com/api/classes/Ember.Enumerable.html

Enumerables 200

1 var states = Ember.Set.create();

2

3 states.add("Hawaii");

4 states.add("California")

5

6 states.toArray()

7 //=> ["Hawaii", "California"]

Note that inmany enumerables, such as the Ember.Set used in this example, the order of the resulting
array is not guaranteed.

First and Last Objects

All Enumerables expose firstObject and lastObject properties that you can bind to.

1 var animals = ["rooster", "pig"];

2

3 animals.get('lastObject');

4 //=> "pig"

5

6 animals.pushObject("peacock");

7

8 animals.get('lastObject');

9 //=> "peacock"

Map

You can easily transform each item in an enumerable using the map()method, which creates a new
array with results of calling a function on each item in the enumerable.

1 var words = ["goodbye", "cruel", "world"];

2

3 var emphaticWords = words.map(function(item) {

4 return item + "!";

5 });

6 // ["goodbye!", "cruel!", "world!"]

If your enumerable is composed of objects, there is a mapBy() method that will extract the named
property from each of those objects in turn and return a new array:

Enumerables 201

1 var hawaii = Ember.Object.create({

2 capital: "Honolulu"

3 });

4

5 var california = Ember.Object.create({

6 capital: "Sacramento"

7 });

8

9 var states = [hawaii, california];

10

11 states.mapBy('capital');

12 //=> ["Honolulu", "Sacramento"]

Filtering

Another common task to perform on an Enumerable is to take the Enumerable as input, and return
an Array after filtering it based on some criteria.

For arbitrary filtering, use the filtermethod. The filter method expects the callback to return true

if Ember should include it in the final Array, and false or undefined if Ember should not.

1 var arr = [1,2,3,4,5];

2

3 arr.filter(function(item, index, self) {

4 if (item < 4) { return true; }

5 })

6

7 // returns [1,2,3]

When working with a collection of Ember objects, you will often want to filter a set of objects based
upon the value of some property. The filterBy method provides a shortcut.

1 Todo = Ember.Object.extend({

2 title: null,

3 isDone: false

4 });

5

6 todos = [

7 Todo.create({ title: 'Write code', isDone: true }),

8 Todo.create({ title: 'Go to sleep' })

9];

10

Enumerables 202

11 todos.filterBy('isDone', true);

12

13 // returns an Array containing only items with `isDone == true`

If you want to return just the first matched value, rather than an Array containing all of the matched
values, you can use find and findBy, which work just like filter and filterBy, but return only
one item.

Aggregate Information (All or Any)

If you want to find out whether every item in an Enumerable matches some condition, you can use
the every method:

1 Person = Ember.Object.extend({

2 name: null,

3 isHappy: false

4 });

5

6 var people = [

7 Person.create({ name: 'Yehuda', isHappy: true }),

8 Person.create({ name: 'Majd', isHappy: false })

9];

10

11 people.every(function(person, index, self) {

12 if(person.get('isHappy')) { return true; }

13 });

14

15 // returns false

If you want to find out whether at least one item in an Enumerable matches some conditions, you
can use the some method:

1 people.some(function(person, index, self) {

2 if(person.get('isHappy')) { return true; }

3 });

4

5 // returns true

Just like the filtering methods, the every and some methods have analogous isEvery and isAny

methods.

Enumerables 203

1 people.isEvery('isHappy', true) // false

2 people.isAny('isHappy', true) // true

Testing
Introduction

Testing is a core part of the Ember framework and its development cycle.

Let’s assume you are writing an Ember application which will serve as a blog. This application
would likely include models such as user and post. It would also include interactions such as login
and create post. Let’s finally assume that you would like to have automated tests²⁵³ in place for your
application.

There are two different classifications of tests that you will need: Integration and Unit.

Integration Tests

Integration tests are used to test user interaction and application flow. With the example scenario
above, some integration tests you might write are:

• A user is able to log in via the login form.
• A user is able to create a blog post.
• A visitor does not have access to the admin panel.

Unit Tests

Unit tests are used to test isolated chunks of functionality, or “units” without worrying about their
dependencies. Some examples of unit tests for the scenario above might be:

• A user has a role
• A user has a username
• A user has a fullname attribute which is the aggregate of its first and last names with a space
between

• A post has a title
• A post’s title must be no longer than 50 characters

²⁵³http://en.wikipedia.org/wiki/Test_automation

http://en.wikipedia.org/wiki/Test_automation
http://en.wikipedia.org/wiki/Test_automation

Testing 205

Testing Frameworks

QUnit²⁵⁴ is the default testing framework for this guide, but others are supported through third-party
adapters.

Contributing

The Ember testing guide provides best practices and examples on how to test your Ember
applications. If you find any errors or believe the documentation can be improved, please feel free
to contribute²⁵⁵.

Integration Test

Integration tests are generally used to test important workflows within your application. They
emulate user interaction and confirm expected results.

Setup

In order to integration test the Ember application, you need to run the app within your test
framework. Set the root element of the application to an arbitrary element you know will exist.
It is useful, as an aid to test-driven development, if the root element is visible while the tests run.
You can potentially use #qunit-fixture, which is typically used to contain fixture html for use in
tests, but you will need to override css to make it visible.

1 App.rootElement = '#arbitrary-element-to-contain-ember-application';

This hook defers the readiness of the application, so that you can start the app when your tests
are ready to run. It also sets the router’s location to ‘none’, so that the window’s location will not
be modified (preventing both accidental leaking of state between tests and interference with your
testing framework).

1 App.setupForTesting();

This injects the test helpers into the window’s scope.

1 App.injectTestHelpers();

With QUnit, setup and teardown functions can be defined in each test module’s configuration. These
functions are called for each test in the module. If you are using a framework other than QUnit, use
the hook that is called before each individual test.

After each test, reset the application: App.reset() completely resets the state of the application.

²⁵⁴http://qunitjs.com/
²⁵⁵https://github.com/emberjs/website

http://qunitjs.com/
https://github.com/emberjs/website
http://qunitjs.com/
https://github.com/emberjs/website

Testing 206

1 module('Integration Tests', {

2 teardown: function() {

3 App.reset();

4 }

5 });

Test adapters for other libraries

If you use a library other than QUnit, your test adapter will need to provide methods for asyncStart
and asyncEnd. To facilitate asynchronous testing, the default test adapter for QUnit uses methods
that QUnit provides: (globals) stop() and start().

Please note:

The ember-testing package is not included in the production builds, only development builds of
Ember include the testing package. The package can be loaded in your dev or qa builds to facilitate
testing your application. By not including the ember-testing package in production, your tests will
not be executable in a production environment.

Test Helpers

One of the major issues in testing web applications is that all code is event-driven, therefore has
the potential to be asynchronous (ie output can happen out of sequence from input). This has the
ramification that code can be executed in any order.

An example may help here: Let’s say a user clicks two buttons, one after another and both load data
from different servers. They take different times to respond.

When writing your tests, you need to be keenly aware of the fact that you cannot be sure that the
response will return immediately after you make your requests, therefore your assertion code (the
“tester”) needs to wait for the thing being tested (the “testee”) to be in a synchronized state. In the
example above, that would be when both servers have responded and the test code can go about its
business checking the data (whether it is mock data, or real data).

This is why all Ember’s test helpers are wrapped in code that ensures Ember is back in a synchronized
state when it makes its assertions. It saves you from having to wrap everything in code that does
that, and it makes it easier to read your tests because there’s less boilerplate in them.

Ember includes several helpers to facilitate integration testing. There are two types of helpers:
asynchronous and synchronous.

Asynchronous Helpers

Asynchronous helpers are “aware” of (and wait for) asynchronous behavior within your application,
making it much easier to write deterministic tests.

Testing 207

Also, these helpers register themselves in the order that you call them and will be run in a chain;
each one is only called after the previous one finishes, in a chain. You can rest assured, therefore,
that the order you call them in will also be their execution order, and that the previous helper has
finished before the next one starts.

• visit(url)

– Visits the given route and returns a promise that fulfills when all resulting async behavior
is complete.

• fillIn(selector, text)

– Fills in the selected input with the given text and returns a promise that fulfills when all
resulting async behavior is complete.

• click(selector)

– Clicks an element and triggers any actions triggered by the element’s click event and
returns a promise that fulfills when all resulting async behavior is complete.

• keyEvent(selector, type, keyCode)

– Simulates a key event type, e.g. keypress, keydown, keyup with the desired keyCode on
element found by the selector.

• triggerEvent(selector, type, options)

– Triggers the given event, e.g. blur, dblclick on the element identified by the provided
selector.

Synchronous Helpers

Synchronous helpers are performed immediately when triggered.

• find(selector, context)

– Finds an element within the app’s root element and within the context (optional). Scop-
ing to the root element is especially useful to avoid conflicts with the test framework’s
reporter, and this is done by default if the context is not specified.

• currentPath()

– Returns the current path.
• currentRouteName()

– Returns the currently active route name.
• currentURL()

– Returns the current URL.

Wait Helpers

The andThen helper will wait for all preceding asynchronous helpers to complete prior to progressing
forward. Let’s take a look at the following example.

Testing 208

1 test('simple test', function() {

2 expect(1); // Ensure that we will perform one assertion

3

4 visit('/posts/new');

5 fillIn('input.title', 'My new post');

6 click('button.submit');

7

8 // Wait for asynchronous helpers above to complete

9 andThen(function() {

10 equal(find('ul.posts li:last').text(), 'My new post');

11 });

12 });

First we tell qunit that this test should have one assertion made by the end of the test by calling
expect with an argument of 1. We then visit the new posts URL “/posts/new”, enter the text “My
new post” into an input control with the CSS class “title”, and click on a button whose class is
“submit”.

We then make a call to the andThen helper which will wait for the preceding asynchronous test
helpers to complete (specifically, andThenwill only be called after the new posts URLwas visited, the
text filled in and the submit button was clicked, and the browser has returned from doing whatever
those actions required). Note andThen has a single argument of the function that contains the code
to execute after the other test helpers have finished.

In the andThen helper, we finally make our call to equal which makes an assertion that the text found
in the last li of the ul whose class is “posts” is equal to “My new post”.

Custom Test Helpers

Ember.Test.registerHelper and Ember.Test.registerAsyncHelper are used to register test helpers
thatwill be injectedwhen App.injectTestHelpers is called. The difference between Ember.Test.registerHelper
and Ember.Test.registerAsyncHelper is that the latter will not run until any previous async helper
has completed and any subsequent async helper will wait for it to finish before running.

The helper method will always be called with the current Application as the first parameter. Helpers
need to be registered prior to calling App.injectTestHelpers().

Here is an example of a non-async helper:

Testing 209

1 Ember.Test.registerHelper('shouldHaveElementWithCount',

2 function(app, selector, n, context) {

3 var el = findWithAssert(selector, context);

4 var count = el.length;

5 equal(n, count, 'found ' + count + ' times');

6 }

7);

8

9 // shouldHaveElementWithCount("ul li", 3);

Here is an example of an async helper:

1 Ember.Test.registerAsyncHelper('dblclick',

2 function(app, selector, context) {

3 var $el = findWithAssert(selector, context);

4 Ember.run(function() {

5 $el.dblclick();

6 });

7 }

8);

9

10 // dblclick("#person-1")

Async helpers also come in handy when you want to group interaction into one helper. For example:

1 Ember.Test.registerAsyncHelper('addContact',

2 function(app, name, context) {

3 fillIn('#name', name);

4 click('button.create');

5 }

6);

7

8 // addContact("Bob");

9 // addContact("Dan");

Example

Here is an example using both registerHelper and registerAsyncHelper.

Custom Test Helpers²⁵⁶

²⁵⁶http://jsbin.com/jesuyeri

http://jsbin.com/jesuyeri
http://jsbin.com/jesuyeri

Testing 210

Testing User Interaction

Almost every test has a pattern of visiting a route, interacting with the page (using the helpers), and
checking for expected changes in the DOM.

Examples:

1 test('root lists first page of posts', function(){

2 visit('/posts');

3 andThen(function() {

4 equal(find('ul.posts li').length, 3, 'The first page should have 3 posts');

5 });

6 });

The helpers that perform actions use a global promise object and automatically chain onto that
promise object if it exists. This allows you to write your tests without worrying about async
behaviour your helper might trigger.

1 module('Integration: Transitions', {

2 teardown: function() {

3 App.reset();

4 }

5 });

6

7 test('add new post', function() {

8 visit('/posts/new');

9 fillIn('input.title', 'My new post');

10 click('button.submit');

11

12 andThen(function() {

13 equal(find('ul.posts li:last').text(), 'My new post');

14 });

15 });

Live Example

Testing Transitions

Suppose we have an application which requires authentication. When a visitor visits a certain URL
as an unauthenticated user, we expect them to be transitioned to a login page.

Testing 211

1 App.ProfileRoute = Ember.Route.extend({

2 beforeModel: function() {

3 var user = this.modelFor('application');

4 if (Em.isEmpty(user)) {

5 this.transitionTo('login');

6 }

7 }

8 });

We could use the route helpers to ensure that the user would be redirected to the login page when
the restricted URL is visited.

1 module('Integration: Transitions', {

2 teardown: function() {

3 App.reset();

4 }

5 });

6

7 test('redirect to login if not authenticated', function() {

8 visit('/');

9 click('.profile');

10

11 andThen(function() {

12 equal(currentRouteName(), 'login');

13 equal(currentPath(), 'login');

14 equal(currentURL(), '/login');

15 });

16 });

Live Example

Testing Transitions²⁵⁷

Unit Testing Basics

Unit tests are generally used to test a small piece of code and ensure that it is doing what was
intended. Unlike integration tests, they are narrow in scope and do not require the Ember application
to be running.

As it is the basic object type in Ember, being able to test a simple Ember.Object sets the foundation
for testingmore specific parts of your Ember application such as controllers, components, etc. Testing
an Ember.Object is as simple as creating an instance of the object, setting its state, and running
assertions against the object. By way of example lets look at a few common cases.

²⁵⁷http://jsbin.com/nulif

http://jsbin.com/nulif
http://jsbin.com/nulif

Testing 212

Testing Computed Properties

Let’s start by looking at an object that has a computedFoo computed property based on a foo property.

1 App.SomeThing = Ember.Object.extend({

2 foo: 'bar',

3 computedFoo: function(){

4 return 'computed ' + this.get('foo');

5 }.property('foo')

6 });

Within the test we’ll create an instance, update the foo property (which should trigger the computed
property), and assert that the logic in our computed property is working correctly.

1 module('Unit: SomeThing');

2

3 test('computedFoo correctly concats foo', function() {

4 var someThing = App.SomeThing.create();

5 someThing.set('foo', 'baz');

6 equal(someThing.get('computedFoo'), 'computed baz');

7 });

Live Example

Unit Testing Basics: Computed Properties²⁵⁸

Testing Object Methods

Next let’s look at testing logic found within an object’s method. In this case the testMethodmethod
alters some internal state of the object (by updating the foo property).

1 App.SomeThing = Ember.Object.extend({

2 foo: 'bar',

3 testMethod: function() {

4 this.set('foo', 'baz');

5 }

6 });

To test it, we create an instance of our class SomeThing as defined above, call the testMethodmethod
and assert that the internal state is correct as a result of the method call.

²⁵⁸http://jsbin.com/miziz

http://jsbin.com/miziz
http://jsbin.com/miziz

Testing 213

1 module('Unit: SomeThing');

2

3 test('calling testMethod updates foo', function() {

4 var someThing = App.SomeThing.create();

5 someThing.testMethod();

6 equal(someThing.get('foo'), 'baz');

7 });

Live Example

Unit Testing Basics: Method Side Effects²⁵⁹

In the event the object’s method returns a value you can simply assert that the return value is
calculated correctly. Suppose our object has a calc method that returns a value based on some
internal state.

1 App.SomeThing = Ember.Object.extend({

2 count: 0,

3 calc: function() {

4 this.incrementProperty('count');

5 return 'count: ' + this.get('count');

6 }

7 });

The test would call the calc method and assert it gets back the correct value.

1 module('Unit: SomeThing');

2

3 test('testMethod returns incremented count', function() {

4 var someThing = App.SomeThing.create();

5 equal(someThing.calc(), 'count: 1');

6 equal(someThing.calc(), 'count: 2');

7 });

Live Example

Unit Testing Basics: Method Side Effects²⁶⁰

Testing Observers

Suppose we have an object that has an observable method based on the foo property.

²⁵⁹http://jsbin.com/weroh
²⁶⁰http://jsbin.com/qutar

http://jsbin.com/weroh
http://jsbin.com/qutar
http://jsbin.com/weroh
http://jsbin.com/qutar

Testing 214

1 App.SomeThing = Ember.Object.extend({

2 foo: 'bar',

3 other: 'no',

4 doSomething: function(){

5 this.set('other', 'yes');

6 }.observes('foo')

7 });

In order to test the doSomething method we create an instance of SomeThing, update the observed
property (foo), and assert that the expected effects are present.

1 module('Unit: SomeThing');

2

3 test('doSomething observer sets other prop', function() {

4 var someThing = App.SomeThing.create();

5 someThing.set('foo', 'baz');

6 equal(someThing.get('other'), 'yes');

7 });

Live Example

Unit Testing Basics: Observers²⁶¹

Unit Test Helpers

Globals vs Modules

In the past, it has been difficult to test portions of your Ember application without loading the entire
app as a global. By having your application written using modules (CommonJS²⁶², AMD²⁶³, etc), you
are able to require just code that is to be tested without having to pluck the pieces out of your global
application.

Unit Testing Helpers

Ember-QUnit²⁶⁴ is the default unit testing helper suite for Ember. It can and should be used
as a template for other test framework helpers. It uses your application’s resolver to find and
automatically create test subjects for you using the moduleFor and test helpers.

²⁶¹http://jsbin.com/daxok
²⁶²http://wiki.commonjs.org/wiki/CommonJS
²⁶³http://requirejs.org/docs/whyamd.html
²⁶⁴https://github.com/rpflorence/ember-qunit

http://jsbin.com/daxok
http://wiki.commonjs.org/wiki/CommonJS
http://requirejs.org/docs/whyamd.html
https://github.com/rpflorence/ember-qunit
http://jsbin.com/daxok
http://wiki.commonjs.org/wiki/CommonJS
http://requirejs.org/docs/whyamd.html
https://github.com/rpflorence/ember-qunit

Testing 215

A test subject is simply an instance of the object that a particular test is making assertions about.
Usually test subjects are manually created by the writer of the test.

The unit testing section of this guide will use the Ember-QUnit library, but the concepts
and examples should translate easily to other frameworks.

Available Helpers

By including Ember-QUnit²⁶⁵, you will have access to a number of test helpers.

• moduleFor(fullName [, description [, callbacks]])

• fullName: The full name of the unit, (ie. controller:application, route:index, etc.)
• description: the description of the module
• callbacks: normal QUnit callbacks (setup and teardown), with addition to needs, which allows
you specify the other units the tests will need.

• moduleForComponent(name [, description [, callbacks]])

• name: the short name of the component that you’d use in a template, (ie. x-foo, ic-tabs, etc.)
• description: the description of the module
• callbacks: normal QUnit callbacks (setup and teardown), with addition to needs, which allows
you specify the other units the tests will need.

• moduleForModel(name [, description [, callbacks]])

• name: the short name of the model you’d use in store operations (ie. user, assignmentGroup,
etc.)

• description: the description of the module
• callbacks: normal QUnit callbacks (setup and teardown), with addition to needs, which allows
you specify the other units the tests will need.

• test

• Same as QUnit test except it includes the subject function which is used to create the test
subject.

• setResolver

• Sets the resolver which will be used to lookup objects from the application container.

Unit Testing Setup

In order to unit test your Ember application, you need to let Ember know it is in test mode. To do
so, you must call Ember.setupForTesting().

²⁶⁵https://github.com/rpflorence/ember-qunit

https://github.com/rpflorence/ember-qunit
https://github.com/rpflorence/ember-qunit

Testing 216

1 Ember.setupForTesting();

The setupForTesting() function call makes ember turn off its automatic run loop execution. This
gives us an ability to control the flow of the run loop ourselves, to a degree. Its default behaviour
of resolving all promises and completing all async behaviour are suspended to give you a chance to
set up state and make assertions in a known state. In other words, you know that if you run “visit”
to get to a particular URL, you can be sure the URL has been visited and that’s the only behaviour
that has transpired. If we didn’t use this mode, our assertions would most likely be executed before
the async behaviour had taken place, so our assertion results would be unpredictable.

With a module-based application, you have access to the unit test helpers simply by requiring the
exports of the module. However, if you are testing a global Ember application, you are still able to
use the unit test helpers. Instead of importing the ember-qunit module, you need to make the unit
test helpers global with emq.globalize():

1 emq.globalize();

This will make the above helpers available globally.

The Resolver

The Ember resolver plays a huge role when unit testing your application. It provides the lookup
functionality based on name, such as route:index or model:post.

If you do not have a custom resolver or are testing a global Ember application, the resolver should
be set like this:

Make sure to replace “App” with your application’s namespace in the following line

1 setResolver(Ember.DefaultResolver.create({ namespace: App }))

Otherwise, youwould require the custom resolver and pass it to setResolver like this (ES6 example):

1 import Resolver from './path/to/resolver';

2 import { setResolver } from 'ember-qunit';

3 setResolver(Resolver.create());

Unit Test Components

Unit testing methods and computed properties follows previous patterns shown in Unit Testing
Basics²⁶⁶ because Ember.Component extends Ember.Object.

Setup

Before testing components, be sure to add testing application div to your testing html file:

²⁶⁶http://emberjs.com/guides/testing/unit-testing-basics

http://emberjs.com/guides/testing/unit-testing-basics
http://emberjs.com/guides/testing/unit-testing-basics
http://emberjs.com/guides/testing/unit-testing-basics

Testing 217

1 <!-- as of time writing, ID attribute needs to be named exactly ember-testing -->

2 <div id="ember-testing"></div>

and then you’ll also need to tell Ember to use this element for rendering the application in

1 App.rootElement = '#ember-testing'

Components can be tested using the moduleForComponent helper. Here is a simple Ember component:

1 App.PrettyColorComponent = Ember.Component.extend({

2 classNames: ['pretty-color'],

3 attributeBindings: ['style'],

4 style: function() {

5 return 'color: ' + this.get('name') + ';';

6 }.property('name')

7 });

with an accompanying Handlebars template:

1 Pretty Color: {{name}}

Unit testing this component can be done using the moduleForComponent helper. This helper will find
the component by name (pretty-color) and it’s template (if available).

1 moduleForComponent('pretty-color');

Now each of our tests has a function subject() which aliases the create method on the component
factory.

Here’s how we would test to make sure rendered HTML changes when changing the color on the
component:

Testing 218

1 test('changing colors', function(){

2

3 // this.subject() is available because we used moduleForComponent

4 var component = this.subject();

5

6 // we wrap this with Ember.run because it is an async function

7 Ember.run(function(){

8 component.set('name','red');

9 });

10

11 // first call to $() renders the component.

12 equal(this.$().attr('style'), 'color: red;');

13

14 // another async function, so we need to wrap it with Ember.run

15 Ember.run(function(){

16 component.set('name', 'green');

17 });

18

19 equal(this.$().attr('style'), 'color: green;');

20 });

Another test that we might perform on this component would be to ensure the template is being
rendered properly.

1 test('template is rendered with the color name', function(){

2

3 // this.subject() is available because we used moduleForComponent

4 var component = this.subject();

5

6 // first call to $() renders the component.

7 equal($.trim(this.$().text()), 'Pretty Color:');

8

9 // we wrap this with Ember.run because it is an async function

10 Ember.run(function(){

11 component.set('name', 'green');

12 });

13

14 equal($.trim(this.$().text()), 'Pretty Color: green');

15 });

Testing 219

Live Example

Unit Testing Components²⁶⁷

Interacting with Components in the DOM

Ember Components are a great way to create powerful, interactive, self-contained custom HTML
elements. Because of this, it is important to not only test the methods on the component itself, but
also the user’s interaction with the component.

Let’s look at a very simple component which does nothing more than set it’s own title when clicked:

1 App.MyFooComponent = Em.Component.extend({

2 title:'Hello World',

3

4 actions:{

5 updateTitle: function(){

6 this.set('title', 'Hello Ember World');

7 }

8 }

9 });

We would use Integration Test Helpers²⁶⁸ to interact with the rendered component:

1 moduleForComponent('my-foo', 'MyFooComponent');

2

3 test('clicking link updates the title', function() {

4 var component = this.subject();

5

6 // append the component to the DOM

7 this.append();

8

9 // assert default state

10 equal(find('h2').text(), 'Hello World');

11

12 // perform click action

13 click('button');

14

15 andThen(function() { // wait for async helpers to complete

16 equal(find('h2').text(), 'Hello Ember World');

17 });

18 });

²⁶⁷http://jsbin.com/hihef
²⁶⁸http://emberjs.com/guides/testing/test-helpers

http://jsbin.com/hihef
http://emberjs.com/guides/testing/test-helpers
http://jsbin.com/hihef
http://emberjs.com/guides/testing/test-helpers

Testing 220

Live Example

Unit Testing Components²⁶⁹

Components with built in layout

Some components do not use a separate template. The template can be embedded into the component
via the layout²⁷⁰ property. For example:

1 App.MyFooComponent = Ember.Component.extend({

2

3 // layout supercedes template when rendered

4 layout: Ember.Handlebars.compile(

5 "<h2>I'm a little {{noun}}</h2>
" +

6 "<button {{action 'changeName'}}>Click Me</button>"

7),

8

9 noun: 'teapot',

10

11 actions:{

12 changeName: function(){

13 this.set('noun', 'embereño');

14 }

15 }

16 });

In this example, we would still perform our test by interacting with the DOM.

1 moduleForComponent('my-foo', 'MyFooComponent');

2

3 test('clicking link updates the title', function() {

4 var component = this.subject();

5

6 // append the component to the DOM

7 this.append();

8

9 // assert default state

10 equal(find('h2').text(), "I'm a little teapot");

11

²⁶⁹http://jsbin.com/liqog
²⁷⁰http://emberjs.com/api/classes/Ember.Component.html#property_layout

http://jsbin.com/liqog
http://emberjs.com/api/classes/Ember.Component.html#property_layout
http://jsbin.com/liqog
http://emberjs.com/api/classes/Ember.Component.html#property_layout

Testing 221

12 // perform click action

13 click('button');

14

15 andThen(function() { // wait for async helpers to complete

16 equal(find('h2').text(), "I'm a little embereño");

17 });

18 });

Live Example

Testing Components with Built-in Layout²⁷¹

Programmatically interacting with components

Another way we can test our components is to perform function calls directly on the component
instead of through DOM interaction. Let’s use the same code example we have above as our
component, but perform the tests programatically:

1 moduleForComponent('my-foo', 'MyFooComponent');

2

3 test('clicking link updates the title', function() {

4 var component = this.subject();

5

6 // append the component to the DOM, returns DOM instance

7 var $component = this.append();

8

9 // assert default state

10 equal($component.find('h2').text(), "I'm a little teapot");

11

12 // send action programmatically

13 Ember.run(function(){

14 component.send('changeName');

15 });

16

17 equal($component.find('h2').text(), "I'm a little embereño");

18 });

Live Example

Programatically Testing Components²⁷²

²⁷¹http://jsbin.com/mazef
²⁷²http://jsbin.com/davuf

http://jsbin.com/mazef
http://jsbin.com/davuf
http://jsbin.com/mazef
http://jsbin.com/davuf

Testing 222

sendAction validation in components

Components often utilize sendAction, which is a way to interact with the Ember application. Here’s
a simple component which sends the action internalAction when a button is clicked:

1 App.MyFooComponent = Ember.Component.extend({

2 layout:Ember.Handlebars.compile("<button {{action 'doSomething'}}></button>"),

3

4 actions:{

5 doSomething: function(){

6 this.sendAction('internalAction');

7 }

8 }

9 });

In our test, we will create a dummy object that receives the action being sent by the component.

1 moduleForComponent('my-foo', 'MyFooComponent');

2

3 test('trigger external action when button is clicked', function() {

4 // tell our test to expect 1 assertion

5 expect(1);

6

7 // component instance

8 var component = this.subject();

9

10 // component dom instance

11 var $component = this.append();

12

13 var targetObject = {

14 externalAction: function(){

15 // we have the assertion here which will be

16 // called when the action is triggered

17 ok(true, 'external Action was called!');

18 }

19 };

20

21 // setup a fake external action to be called when

22 // button is clicked

23 component.set('internalAction', 'externalAction');

24

25 // set the targetObject to our dummy object (this

Testing 223

26 // is where sendAction will send it's action to)

27 component.set('targetObject', targetObject);

28

29 // click the button

30 click('button');

31 });

Live Example

sendAction Validation in Components²⁷³

Components Using Other Components

Sometimes components are easier to maintain when broken up into parent and child components.
Here is a simple example:

1 App.MyAlbumComponent = Ember.Component.extend({

2 tagName: 'section',

3 layout: Ember.Handlebars.compile(

4 "<section>" +

5 " <h3>{{title}}</h3>" +

6 " {{yield}}" +

7 "</section>"

8),

9 titleBinding: ['title']

10 });

11

12 App.MyKittenComponent = Ember.Component.extend({

13 tagName: 'img',

14 attributeBindings: ['width', 'height', 'src'],

15 src: function() {

16 return 'http://placekitten.com/' + this.get('width') + '/' + this.get('heigh\

17 t');

18 }.property('width', 'height')

19 });

Usage of this component might look something like this:

²⁷³http://jsbin.com/siwil

http://jsbin.com/siwil
http://jsbin.com/siwil

Testing 224

1 {{#my-album title="Cats"}}

2 {{my-kitten width="200" height="300"}}

3 {{my-kitten width="100" height="100"}}

4 {{my-kitten width="50" height="50"}}

5 {{/my-album}}

Testing components like these which include child components is very simple using the needs

callback.

1 moduleForComponent('my-album', 'MyAlbumComponent', {

2 needs: ['component:my-kitten']

3 });

4

5 test('renders kittens', function() {

6 expect(2);

7

8 // component instance

9 var component = this.subject({

10 template: Ember.Handlebars.compile(

11 '{{#my-album title="Cats"}}' +

12 ' {{my-kitten width="200" height="300"}}' +

13 ' {{my-kitten width="100" height="100"}}' +

14 ' {{my-kitten width="50" height="50"}}' +

15 '{{/my-album}}'

16)

17 });

18

19 // append component to the dom

20 var $component = this.append();

21

22 // perform assertions

23 equal($component.find('h3:contains("Cats")').length, 1);

24 equal($component.find('img').length, 3);

25 });

Live Example

Components with Embedded Components²⁷⁴

²⁷⁴http://jsbin.com/xebih

http://jsbin.com/xebih
http://jsbin.com/xebih

Testing 225

Testing Controllers

Unit testing methods and computed properties follows previous patterns shown in Unit Testing
Basics²⁷⁵ because Ember.Controller extends Ember.Object.

Unit testing controllers is very simple using the unit test helper moduleFor²⁷⁶ which is part of the
ember-qunit framework.

Testing Controller Actions

Here we have a controller PostsControllerwith some computed properties and an action setProps.

1 App.PostsController = Ember.ArrayController.extend({

2

3 propA: 'You need to write tests',

4 propB: 'And write one for me too',

5

6 setPropB: function(str) {

7 this.set('propB', str);

8 },

9

10 actions: {

11 setProps: function(str) {

12 this.set('propA', 'Testing is cool');

13 this.setPropB(str);

14 }

15 }

16 });

setProps sets a property on the controller and also calls a method. To write a test for this action, we
would use the moduleFor helper to setup a test container:

1 moduleFor('controller:posts', 'Posts Controller');

Next we use this.subject() to get an instance of the PostsController and write a test to check the
action. this.subject() is a helper method from the ember-qunit library that returns a singleton
instance of the module set up using moduleFor.

²⁷⁵http://emberjs.com/guides/testing/unit-testing-basics
²⁷⁶http://emberjs.com/guides/testing/unit

http://emberjs.com/guides/testing/unit-testing-basics
http://emberjs.com/guides/testing/unit-testing-basics
http://emberjs.com/guides/testing/unit
http://emberjs.com/guides/testing/unit-testing-basics
http://emberjs.com/guides/testing/unit

Testing 226

1 test('calling the action setProps updates props A and B', function() {

2 expect(4);

3

4 // get the controller instance

5 var ctrl = this.subject();

6

7 // check the properties before the action is triggered

8 equal(ctrl.get('propA'), 'You need to write tests');

9 equal(ctrl.get('propB'), 'And write one for me too');

10

11 // trigger the action on the controller by using the `send` method,

12 // passing in any params that our action may be expecting

13 ctrl.send('setProps', 'Testing Rocks!');

14

15 // finally we assert that our values have been updated

16 // by triggering our action.

17 equal(ctrl.get('propA'), 'Testing is cool');

18 equal(ctrl.get('propB'), 'Testing Rocks!');

19 });

Live Example

Unit Testing Controllers “Actions”²⁷⁷

Testing Controller Needs

Sometimes controllers have dependencies on other controllers. This is accomplished by using
needs²⁷⁸. For example, here are two simple controllers. The PostController is a dependency of
the CommentsController:

1 App.PostController = Ember.ObjectController.extend({

2 // ...

3 });

4

5 App.CommentsController = Ember.ArrayController.extend({

6 needs: 'post',

7 title: Ember.computed.alias('controllers.post.title'),

8 });

This time when we setup our moduleFor we need to pass an options object as our third argument
that has the controller’s needs.

²⁷⁷http://jsbin.com/sanaf
²⁷⁸http://emberjs.com/guides/controllers/dependencies-between-controllers

http://jsbin.com/sanaf
http://emberjs.com/guides/controllers/dependencies-between-controllers
http://jsbin.com/sanaf
http://emberjs.com/guides/controllers/dependencies-between-controllers

Testing 227

1 moduleFor('controller:comments', 'Comments Controller', {

2 needs: ['controller:post']

3 });

Now let’s write a test that sets a property on our post model in the PostController that would be
available on the CommentsController.

1 test('modify the post', function() {

2 expect(2);

3

4 // grab an instance of `CommentsController` and `PostController`

5 var ctrl = this.subject(),

6 postCtrl = ctrl.get('controllers.post');

7

8 // wrap the test in the run loop because we are dealing with async functions

9 Ember.run(function() {

10

11 // set a generic model on the post controller

12 postCtrl.set('model', Ember.Object.create({ title: 'foo' }));

13

14 // check the values before we modify the post

15 equal(ctrl.get('title'), 'foo');

16

17 // modify the title of the post

18 postCtrl.get('model').set('title', 'bar');

19

20 // assert that the controllers title has changed

21 equal(ctrl.get('title'), 'bar');

22

23 });

24 });

Live Example

Unit Testing Controllers “Needs”²⁷⁹

Testing Routes

Unit testing methods and computed properties follows previous patterns shown in Unit Testing
Basics²⁸⁰ because Ember.Route extends Ember.Object.

²⁷⁹http://jsbin.com/busoz
²⁸⁰http://emberjs.com/guides/testing/unit-testing-basics

http://jsbin.com/busoz
http://emberjs.com/guides/testing/unit-testing-basics
http://emberjs.com/guides/testing/unit-testing-basics
http://jsbin.com/busoz
http://emberjs.com/guides/testing/unit-testing-basics

Testing 228

Testing routes can be done both via integration or unit tests. Integration tests will likely provide
better coverage for routes because routes are typically used to perform transitions and load data,
both of which are tested more easily in full context rather than isolation.

That being said, sometimes it is important to unit test your routes. For example, let’s say we’d like
to have an alert that can be triggered from anywhere within our application. The alert function
displayAlert should be put into the ApplicationRoute because all actions and events bubble up to
it from sub-routes, controllers and views.

1 App.ApplicationRoute = Em.Route.extend({

2 actions: {

3 displayAlert: function(text) {

4 this._displayAlert(text);

5 }

6 },

7

8 _displayAlert: function(text) {

9 alert(text);

10 }

11 });

This is made possible by using moduleFor.

In this route we’ve separated our concerns²⁸¹: The action displayAlert contains the code that is
called when the action is received, and the private function _displayAlert performs the work.
While not necessarily obvious here because of the small size of the functions, separating code into
smaller chunks (or “concerns”), allows it to be more readily isolated for testing, which in turn allows
you to catch bugs more easily.

Here is an example of how to unit test this route:

1 moduleFor('route:application', 'Unit: route/application', {

2 setup: function() {

3 originalAlert = window.alert; // store a reference to the window.alert

4 },

5 teardown: function() {

6 window.alert = originalAlert; // restore original functions

7 }

8 });

9

10 test('Alert is called on displayAlert', function() {

11 expect(1);

²⁸¹http://en.wikipedia.org/wiki/Separation_of_concerns

http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Separation_of_concerns

Testing 229

12

13 // with moduleFor, the subject returns an instance of the route

14 var route = this.subject(),

15 expectedText = 'foo';

16

17 // stub window.alert to perform a qunit test

18 window.alert = function(text) {

19 equal(text, expectedText, 'expected ' + text + ' to be ' + expectedText);

20 }

21

22 // call the _displayAlert function which triggers the qunit test above

23 route._displayAlert(expectedText);

24 });

Live Example

Custom Test Helpers²⁸²

Testing Models

Unit testing methods and computed properties follows previous patterns shown in Unit Testing
Basics²⁸³ because DS.Model extends Ember.Object.

Ember Data²⁸⁴ Models can be tested using the moduleForModel helper.

Let’s assume we have a Player model that has level and levelName attributes. We want to call
levelUp() to increment the level and assign a new levelName when the player reaches level 5.

1 App.Player = DS.Model.extend({

2 level: DS.attr('number', { defaultValue: 0 }),

3 levelName: DS.attr('string', { defaultValue: 'Noob' }),

4

5 levelUp: function() {

6 var newLevel = this.incrementProperty('level');

7 if (newLevel === 5) {

8 this.set('levelName', 'Professional');

9 }

10 }

11 });

Now let’s create a test which will call levelUp on the player when they are level 4 to assert that the
levelName changes. We will use moduleForModel:

²⁸²http://jsbin.com/xivoy
²⁸³http://emberjs.com/guides/testing/unit-testing-basics
²⁸⁴https://github.com/emberjs/data

http://jsbin.com/xivoy
http://emberjs.com/guides/testing/unit-testing-basics
http://emberjs.com/guides/testing/unit-testing-basics
https://github.com/emberjs/data
http://jsbin.com/xivoy
http://emberjs.com/guides/testing/unit-testing-basics
https://github.com/emberjs/data

Testing 230

1 moduleForModel('player', 'Player Model');

2

3 test('levelUp', function() {

4 // this.subject aliases the createRecord method on the model

5 var player = this.subject({ level: 4 });

6

7 // wrap asynchronous call in run loop

8 Ember.run(function() {

9 player.levelUp();

10 });

11

12 equal(player.get('level'), 5);

13 equal(player.get('levelName'), 'Professional');

14 });

Live Example

Unit Testing Ember Data Models²⁸⁵

Testing Relationships

For relationships you probably only want to test that the relationship declarations are setup properly.

Assume that a User can own a Profile.

1 App.Profile = DS.Model.extend({});

2

3 App.User = DS.Model.extend({

4 profile: DS.belongsTo('profile')

5 });

Then you could test that the relationship is wired up correctly with this test.

²⁸⁵http://jsbin.com/naqif

http://jsbin.com/naqif
http://jsbin.com/naqif

Testing 231

1 moduleForModel('user', 'User Model', {

2 needs: ['model:profile']

3 });

4

5 test('profile relationship', function() {

6 var User = this.store().modelFor('user');

7 var relationship = Ember.get(User, 'relationshipsByName').get('profile');

8

9 equal(relationship.key, 'profile');

10 equal(relationship.kind, 'belongsTo');

11 });

Live Example Unit Testing Models (Relationships : One-to-One)²⁸⁶

Ember Data contains extensive tests around the functionality of relationships, so you probably don’t
need to duplicate those tests. You could look at the Ember Data tests²⁸⁷ for examples of deeper
relationship testing if you feel the need to do it.

Automating Tests with Runners

When it comes to running your tests there are multiple approaches that you can take depending on
what best suits your workflow. Finding a low friction method of running your tests is important
because it is something that you will be doing quite often.

The Browser

The simplest way of running your tests is just opening a page in the browser. The following is how
to put a test “harness” around your app with qunit so you can run tests against it:

First, get a copy of qunit (both the JavaScript and the css) from here²⁸⁸.

Next, create an HTML file that includes qunit and it’s css that looks like the following example.

²⁸⁶href=”http://jsbin.com/zuvak
²⁸⁷https://github.com/emberjs/data/tree/master/packages/ember-data/tests
²⁸⁸http://qunitjs.com/

href="http://jsbin.com/zuvak
https://github.com/emberjs/data/tree/master/packages/ember-data/tests
http://qunitjs.com/
href="http://jsbin.com/zuvak
https://github.com/emberjs/data/tree/master/packages/ember-data/tests
http://qunitjs.com/

Testing 232

1 <!DOCTYPE html>

2 <html>

3 <head>

4 <meta charset="utf-8">

5 <title>QUnit Example</title>

6 <link rel="stylesheet" href="qunit.css">

7 </head>

8 <body>

9 <div id="qunit"></div>

10 <div id="qunit-fixture"></div>

11 <script src="qunit.js"></script>

12 <script src="your_ember_code_here.js"></script>

13 <script src="your_test_code_here.js"></script>

14 </body>

15 </html>

Finally, launch your browser of choice and open the above html file.

That’s it. You’re done and your tests are running. No need to install and configure any other tools or
have any other processes running. After adding or updating tests and/or code just reload the page
and you’re off to the races running your tests.

If that meets your needs, read no further. However, if you would like a more automated way of
running your tests, read on.

Manually opening and refreshing a browser may prove to be a bit of a tedious workflow for you.
While you get the benefit of knowing that your code (and your tests) work in every browser that
you are able to launch, it’s still up to you to do the launching (and then refreshing) each time you
make a change. Getting rid of repetition is why we use computers, so this can be a problem.

Luckily there are tools to help with this. These tools allow you to run your tests in actual browsers
(yes browsers - as in more than one at the same time) and then report the results back to you
in a consolidated view. These tools are run from the command line and they are also capable of
automatically re-running tests when changes are made to files. They require a bit more setup than
creating a simple html file but they will likely save time in the long run.

The Testem Runner

Testem²⁸⁹ is a simple tool to setup and use. In a nutshell it will collect all of your application code,
your test code, your testing framework of choice and build a test “harness” automatically. It will
then launch each browser (that you specify), run the tests and report the results back to you. It has
a nice terminal-based user interface that will display test results for each browser. There are many
features built into testem, but it does not seem to have any 3rd party plugins or extensions available.

²⁸⁹https://github.com/airportyh/testem

https://github.com/airportyh/testem
https://github.com/airportyh/testem

Testing 233

To get started using testem, you’ll need to install the testem node.js module. Assuming you have
node²⁹⁰ installed, run the following command:

1 npm install -g --save-dev testem

Testem is now available to run your tests. There is just a little bit of configuration that needs to be
done first.

1 // testem.json

2 {

3 "framework": "qunit",

4 "src_files": [

5 "your_ember_code_here.js",

6 "your_test_code_here.js"

7],

8 "launch_in_dev": ["PhantomJS"],

9 "launch_in_ci": ["PhantomJS"]

10 }

That’s it. Everything you need is installed and configured. Let’s go over the configuration in more
detail.

• framework

• This represents the testing framework that you are going to be using. Qunit is what we are
using in this example. Testem takes care of getting the qunit library loaded up so you don’t
have to worry about it.

• src_files

• This represents which of your source files (including both production and test code) that you
want testem to load when running tests.

• launch_in_dev

• This allows you to configure which browsers to launch and run the tests. This can be one or
more browsers. When multiple are specified your tests will run in all browsers concurrently.

• launch_in_ci

• This allows you to configure which browsers to launch and run the tests in ‘ci’ mode. This is
specifically geared towards continuous integration²⁹¹ environments that may be headless.

There are plenty of other options that you can configure as well if you would like. To see a list of
available options you can check out the testem documentation²⁹².

To start testem run the following command.

²⁹⁰http://nodejs.org/download/
²⁹¹http://en.wikipedia.org/wiki/Continuous_integration
²⁹²https://github.com/airportyh/testem

http://nodejs.org/download/
http://en.wikipedia.org/wiki/Continuous_integration
https://github.com/airportyh/testem
http://nodejs.org/download/
http://en.wikipedia.org/wiki/Continuous_integration
https://github.com/airportyh/testem

Testing 234

1 testem

This will start testem and launch all of your browsers listed in the launch_in_dev setting. A tabbed
view, one tab for each browser listed, will appear that you can cycle through using the arrow keys to
see the test results in each browser. There are other commands that you can use as well, run testem

-h to see the list of all available commands in the tabbed view. Testem will continually run and
re-run your tests when changes are made to your files listed in the src_files setting.

The launch_in_ci setting comes into play when you run testem with the following command.

1 testem ci

Much like running testemwith no arguments, the ci option will use your same configuration except
it will use the launch_in_ci rather than the launch_in_dev list of browsers. This ci option will also
cause testem to run all of the tests once and exit printing the results to the terminal.

The Karma Test Runner

Karma²⁹³ is another simple tool to setup and use. It is similar to testem in that it will collect all of
your application code, your test code, your testing framework of choice and build a test “harness”
automatically. It will then launch each browser (that you specify), run the tests and report the results
back to you. The terminal user interface is not as fancy as testem, but there is a colored display of
test results for each browser. Karma has many features as well as many plugins. For information
about writing karma plugins checkout the docs²⁹⁴. To find some available karma plugins start with
karma_runner²⁹⁵ on github.

To get started using karma you will need to install a few node modules. Here is an example of a
package.json²⁹⁶ file which includes everything that you will need to get started.

1 // package.json

2 {

3 "name": "your_project_name",

4 "version": "0.1.0",

5 "devDependencies": {

6 "karma-qunit": "0.1.1",

7 "karma-phantomjs-launcher": "0.1.2",

8 "karma": "0.12.1"

9 }

10 }

²⁹³http://karma-runner.github.io/
²⁹⁴http://karma-runner.github.io/0.10/config/plugins.html
²⁹⁵https://github.com/karma-runner?query=launcher
²⁹⁶https://www.npmjs.org/doc/json.html

http://karma-runner.github.io/
http://karma-runner.github.io/0.10/config/plugins.html
https://github.com/karma-runner?query=launcher
https://www.npmjs.org/doc/json.html
http://karma-runner.github.io/
http://karma-runner.github.io/0.10/config/plugins.html
https://github.com/karma-runner?query=launcher
https://www.npmjs.org/doc/json.html

Testing 235

The three dependencies are karma itself, karma-qunit which includes everything that you will need
to run qunit tests and karma-phantomjs-launcherwhich is what karmawill use to fire up an instance
of the headless PhantomJS browser to run your tests in. There are a number of different launchers
that you can plug into the karma test runner including but not limited to Google Chrome, FireFox,
Safari, IE, and even Sauce Labs²⁹⁷. To see a complete list of all of the available launchers check out
Karma’s Github²⁹⁸.

Now that you’ve got a package.json containing everything that you will need to get started with
karma run the following command (in the same directory as your package.json file) to download
and install everything.

1 npm install

Karma along with everything else that you need to start running your tests is now available. There
is a little bit of configuration that needs to be done first. If you want to generate the default karma
configuration you can run karma init and that will create a karma.conf.js file in your current
directory. There are many configuration options available, so here’s a pared down version: ie, the
minimum configuration that Karma requires to run your tests.

1 // karma.conf.js

2 module.exports = function(config) {

3 config.set({

4 frameworks: ['qunit'],

5 files: [

6 'your_ember_code_here.js',

7 'your_test_code_here.js'

8],

9 autoWatch: true,

10 singleRun: true,

11 browsers: ['PhantomJS']

12 });

13 };

There is one last thing that you need to install: Karma’s command line interface.

1 npm install -g karma-cli

That’s it. Everything you need is installed and configured. Let’s go over the configuration in more
detail.

²⁹⁷https://saucelabs.com/
²⁹⁸https://github.com/karma-runner?query=launcher

https://saucelabs.com/
https://github.com/karma-runner?query=launcher
https://saucelabs.com/
https://github.com/karma-runner?query=launcher

Testing 236

• frameworks

• This represents the testing frameworks that you’re going to use. We’re using QUnit in this
example. Karma takes care of loading up the QUnit library for you.

• files

• This represents which of your source files (including both production and test code) that you
want karma to load when running tests.

• autoWatch

• A value of true will mean that karma will watch all of the files for changes and rerun the
tests only when singleRun is false.

• singleRun

• A value of true will run all of the tests one time and shut down, whereas a value of false
will run all of your tests once, then wait for any files to change which will trigger re-running
all your tests.

• browsers

• This allows you to configure which browsers to launch and run the tests. This can be one or
more browsers. When multiple are specified your tests will run in all browsers concurrently.

There are plenty of other options that you can configure as well if you would like. To see a list of
available options you can check out the Karma documentation²⁹⁹ or instead of manually creating
karma.conf.js you can run the following command.

1 karma init

To start karma run

1 karma start

Depending on your configuration it will either run the tests and exit or run the tests and wait for
file changes to run the tests again.

Build Integration

Both testem and karma are capable of being integrated into larger build processes. For example,
you may be using CoffeeScript³⁰⁰, ES6³⁰¹ or something else and need to transpile³⁰² your source into
JavaScript. If you happen to be using grunt you can use grunt-contrib-testem for testem or
grunt-karma for karma integration into your existing build process. Both testem and karma have
preprocessing configuration options available as well. For more information on other available
configuration options see the docs for karma³⁰³ or testem³⁰⁴.

²⁹⁹http://karma-runner.github.io/
³⁰⁰http://coffeescript.org/
³⁰¹http://square.github.io/es6-module-transpiler/
³⁰²http://en.wikipedia.org/wiki/Source-to-source_compiler
³⁰³http://karma-runner.github.io/
³⁰⁴https://github.com/airportyh/testem

http://karma-runner.github.io/
http://coffeescript.org/
http://square.github.io/es6-module-transpiler/
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://karma-runner.github.io/
https://github.com/airportyh/testem
http://karma-runner.github.io/
http://coffeescript.org/
http://square.github.io/es6-module-transpiler/
http://en.wikipedia.org/wiki/Source-to-source_compiler
http://karma-runner.github.io/
https://github.com/airportyh/testem

Testing 237

Generating Reports

Oftentimes it’s useful to get the results of your tests in different formats. For example, if you happen
to use Jenkins³⁰⁵ as a ci³⁰⁶ server, you may want to get your test results in XML format so Jenkins
can build some graphs of your test results over time. Also, you may want to measure your code
coverage³⁰⁷ and have Jenkins track that over time as well. With these test runners, it’s possible to
generate reports from the results in various formats, as well as record other information such as
code-test coverage, etc.

XML Test Results from Testem

To get junit xml³⁰⁸ from the testem test runner you can simply add a flag to the command when
you run testem and pipe the output to a file like the following command.

1 testem ci -R xunit > test-results.xml

That’s it! Now you can use test-results.xml to feed into another tool.

XML Test Results from Karma

To get junit xml³⁰⁹ from the karma test runner you will need to install a new node.js module. You
can do so with the following command.

1 npm install --save-dev karma-junit-reporter

Once that is done you will need to update your karma configuration to include the following.

1 module.exports = function(config) {

2 config.set({

3 /* snip */

4 reporters: ['progress', 'junit'],

5 /* snip */

6 });

7 };

The reporters option determines how your test results are communicated back to you. The progress
reporter will display a line that says something like this.

³⁰⁵http://jenkins-ci.org/
³⁰⁶http://en.wikipedia.org/wiki/Continuous_integration
³⁰⁷http://en.wikipedia.org/wiki/Code_coverage
³⁰⁸http://ant.apache.org/manual/Tasks/junitreport.html
³⁰⁹http://ant.apache.org/manual/Tasks/junitreport.html

http://jenkins-ci.org/
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Code_coverage
http://en.wikipedia.org/wiki/Code_coverage
http://ant.apache.org/manual/Tasks/junitreport.html
http://ant.apache.org/manual/Tasks/junitreport.html
http://jenkins-ci.org/
http://en.wikipedia.org/wiki/Continuous_integration
http://en.wikipedia.org/wiki/Code_coverage
http://ant.apache.org/manual/Tasks/junitreport.html
http://ant.apache.org/manual/Tasks/junitreport.html

Testing 238

1 PhantomJS 1.9.7 (Mac OS X): Executed 2 of 2 SUCCESS (0.008 secs / 0.002 secs)

The junit reporter will create an xml file called test-results.xml in the current directory that
contains junit xml which can be used as input to other tools. This file can be renamed to whatever
you would like. For more information see the docs for karma junit reporter³¹⁰.

Code Coverage from Testem

Getting coverage from testem is a bit more involved at the moment, though there is a way to do it.
Check the testem docs³¹¹ for more information.

Code Coverage from Karma

To measure your code coverage³¹² from the karma test runner you will need to install a new node.js
module. You can do so with the following command.

1 npm install --save-dev karma-coverage

Once that’s done you will need to update your karma configuration to include the following.

1 module.exports = function(config) {

2 config.set({

3 /* snip */

4 reporters: ['progress', 'coverage'],

5 preprocessors: {

6 "your_ember_code_here.js": "coverage",

7 "your_test_code_here.js": "coverage"

8 },

9 coverageReporter: {

10 type: "text",

11 }

12 /* snip */

13 });

14 };

That’s it. Now, running karma normally will display code coverage information in the terminal. The
coverageReporter.type option can be set to a number of different values. The value in the example,
text, will only display to the console. Some other options are lcov, html and cobertura which can
be used as input to other tools. For additional configuration options on coverage reporting from
karma check out their docs³¹³.

³¹⁰https://github.com/karma-runner/karma-junit-reporter
³¹¹https://github.com/airportyh/testem/tree/master/examples/coverage_istanbul
³¹²http://en.wikipedia.org/wiki/Code_coverage
³¹³http://karma-runner.github.io/0.8/config/coverage.html

https://github.com/karma-runner/karma-junit-reporter
https://github.com/airportyh/testem/tree/master/examples/coverage_istanbul
http://en.wikipedia.org/wiki/Code_coverage
http://karma-runner.github.io/0.8/config/coverage.html
https://github.com/karma-runner/karma-junit-reporter
https://github.com/airportyh/testem/tree/master/examples/coverage_istanbul
http://en.wikipedia.org/wiki/Code_coverage
http://karma-runner.github.io/0.8/config/coverage.html

Configuring Ember.js
Disabling Prototype Extensions

By default, Ember.js will extend the prototypes of native JavaScript objects in the following ways:

• Array is extended to implement the Ember.Enumerable, Ember.MutableEnumerable, Ember.MutableArray
and Ember.Array interfaces. This polyfills ECMAScript 5 array methods in browsers that do
not implement them, adds convenience methods and properties to built-in arrays, and makes
array mutations observable.

• String is extended to add convenience methods, such as camelize() and fmt().
• Function is extended with methods to annotate functions as computed properties, via the
property() method, and as observers, via the observes() or observesBefore() methods.

This is the extent to which Ember.js enhances native prototypes. We have carefully weighed the
tradeoffs involved with changing these prototypes, and recommend that most Ember.js developers
use them. These extensions significantly reduce the amount of boilerplate code that must be typed.

However, we understand that there are cases where your Ember.js application may be embedded in
an environment beyond your control. The most common scenarios are when authoring third-party
JavaScript that is embedded directly in other pages, or when transitioning an application piecemeal
to a more modern Ember.js architecture.

In those cases, where you can’t or don’t want to modify native prototypes, Ember.js allows you to
completely disable the extensions described above.

To do so, simply set the EXTEND_PROTOTYPES flag to false:

1 window.ENV = {};

2 ENV.EXTEND_PROTOTYPES = false;

Note that the above code must be evaluated before Ember.js loads. If you set the flag after the
Ember.js JavaScript file has been evaluated, the native prototypes will already have been modified.

Life Without Prototype Extension

In order for your application to behave correctly, you will need to manually extend or create the
objects that the native objects were creating before.

Configuring Ember.js 240

Arrays

Native arrays will no longer implement the functionality needed to observe them. If you disable
prototype extension and attempt to use native arrays with things like a template’s {{#each}} helper,
Ember.js will have no way to detect changes to the array and the template will not update as the
underlying array changes.

Additionally, if you try to set the model of an Ember.ArrayController to a plain native array, it will
raise an exception since it no longer implements the Ember.Array interface.

You can manually coerce a native array into an array that implements the required interfaces using
the convenience method Ember.A:

1 var islands = ['Oahu', 'Kauai'];

2 islands.contains('Oahu');

3 //=> TypeError: Object Oahu,Kauai has no method 'contains'

4

5 // Convert `islands` to an array that implements the

6 // Ember enumerable and array interfaces

7 Ember.A(islands);

8

9 islands.contains('Oahu');

10 //=> true

Strings

Strings will no longer have the convenience methods described in the Ember.String API reference.³¹⁴.
Instead, you can use the similarly-named methods of the Ember.String object and pass the string
to use as the first parameter:

1 "my_cool_class".camelize();

2 //=> TypeError: Object my_cool_class has no method 'camelize'

3

4 Ember.String.camelize("my_cool_class");

5 //=> "myCoolClass"

Functions

To annotate computed properties, use the Ember.computed() method to wrap the function:

³¹⁴http:emberjs.com/api/classes/Ember.String.html

http:emberjs.com/api/classes/Ember.String.html
http:emberjs.com/api/classes/Ember.String.html

Configuring Ember.js 241

1 // This won't work:

2 fullName: function() {

3 return this.get('firstName') + ' ' + this.get('lastName');

4 }.property('firstName', 'lastName')

5

6

7 // Instead, do this:

8 fullName: Ember.computed('firstName', 'lastName', function() {

9 return this.get('firstName') + ' ' + this.get('lastName');

10 })

Observers are annotated using Ember.observer():

1 // This won't work:

2 fullNameDidChange: function() {

3 console.log("Full name changed");

4 }.observes('fullName')

5

6

7 // Instead, do this:

8 fullNameDidChange: Ember.observer('fullName', function() {

9 console.log("Full name changed");

10 })

Embedding Applications

In most cases, your application’s entire UI will be created by templates that are managed by the
router.

But what if you have an Ember.js app that you need to embed into an existing page, or run alongside
other JavaScript frameworks?

Changing the Root Element

By default, your application will render the application template³¹⁵ and attach it to the document’s
body element.

You can tell the application to append the application template to a different element by specifying
its rootElement property:

³¹⁵http://emberjs.com/guides/templates/the-application-template

http://emberjs.com/guides/templates/the-application-template
http://emberjs.com/guides/templates/the-application-template

Configuring Ember.js 242

1 App = Ember.Application.create({

2 rootElement: '#app'

3 });

This property can be specified as either an element or a jQuery-compatible selector string³¹⁶.

Disabling URL Management

You can prevent Ember from making changes to the URL by changing the router’s location³¹⁷ to
none:

1 App.Router = Ember.Router.extend({

2 location: 'none'

3 });

Feature Flags

About Features

When a new feature is added to Ember they will be written in such a way that the feature can be
conditionally included in the generated build output and enabled (or completely removed) based on
whether a particular flag is present. This allows newly developed features to be selectively released
when they are considered ready for production use.

Feature Life-Cycle

When a new feature is flagged it is only available in canary builds (if enabled at runtime). When it is
time for the next beta cycle to be started (generally 6-12 week cycles) each feature will be evaluated
and those features that are ready will be enabled in the next beta (and subsequently automatically
enabled in all future canary builds).

If a given feature is deemed unstable it will be disabled in the next beta point release, and not be
included in the next stable release. It may still be included in the next beta cycle if the issues/concerns
have been resolved.

Once the beta cycle has completed the final release will include any features that were enabled
during that cycle. At this point the feature flags will be removed from the canary and future beta
branches, and the feature flag will no longer be used.

³¹⁶http://api.jquery.com/category/selectors/
³¹⁷http://emberjs.com/guides/routing/specifying-the-location-api

http://api.jquery.com/category/selectors/
http://emberjs.com/guides/routing/specifying-the-location-api
http://api.jquery.com/category/selectors/
http://emberjs.com/guides/routing/specifying-the-location-api

Configuring Ember.js 243

Flagging Details

The flag status in the generated build output is controlled by the features.json file in the root of
the project. This file lists all features and their current status.

A feature can have one of a few different statuses:

• true - The feature is enabled: the code behind the flag is always enabled in the generated
build.

• false - The feature is disabled: the code behind the flag is not present in the generated build
at all.

• null - The feature is present in the build output, but must be enabled at runtime (it is still
behind feature flags).

The process of removing the feature flags from the resulting build output is handled by defeatureify.

Feature Listing (FEATURES.md)

When a new feature is added to the canary channel (aka master branch), an entry is added to
FEATURES.md³¹⁸ explaining what the feature does (and linking the originating pull request). This
listing is kept current, and reflects what is available in each branch (stable,beta, and master).

Enabling At Runtime

The only time a feature can be enabled at runtime is if the features.json for that build contains
null (technically, anything other than true or false will do, but null is the chosen value).

A global EmberENV object will be used to initialize the Ember.ENV object, and any feature flags that
are enabled/disabled under EmberENV.FEATURES will be migrated to Ember.FEATURES; those features
will be enabled based on the flag value. Ember only reads the EmberENV value upon initial load so
setting this value after Ember has been loaded will have no affect.

Example:

1 EmberENV = {FEATURES: {'link-to': true}};

Additionally you can define EmberENV.ENABLE_ALL_FEATURES to force all features to be enabled.

³¹⁸https://github.com/emberjs/ember.js/blob/master/FEATURES.md

https://github.com/emberjs/ember.js/blob/master/FEATURES.md
https://github.com/emberjs/ember.js/blob/master/FEATURES.md
https://github.com/emberjs/ember.js/blob/master/FEATURES.md

Cookbook
Introduction

Welcome to the Ember.js Cookbook! The Cookbook provides answers and solutions to common
Ember questions and problems. Anyone is welcome to contribute³¹⁹.

Here are all of the available recipes:

Contributing

1. Understanding the Cookbook Format³²⁰
2. Participating If You Know Ember³²¹
3. Participating If You Don’t Know Ember³²²
4. Deciding If A Recipe is a Good Fit³²³
5. Suggesting A Recipe³²⁴

User Interface & Interaction

1. Adding CSS Classes to Your Components³²⁵
2. Adding CSS Classes to Your Components Based on Properties³²⁶
3. Focusing a Textfield after It’s Been Inserted³²⁷
4. Displaying Formatted Dates With Moment.js³²⁸
5. Specifying Data-Driven Areas of Templates That Do Not Need To Update³²⁹
6. Using Modal Dialogs³³⁰
7. Resetting scroll on route changes³³¹

³¹⁹http://emberjs.com/guides/cookbook/contributing
³²⁰http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
³²¹http://emberjs.com/guides/cookbook/contributing/participating_if_you_know_ember
³²²http://emberjs.com/guides/cookbook/contributing/participating_if_you_dont_know_ember
³²³http://emberjs.com/guides/cookbook/contributing/deciding_if_a_recipe_is_a_good_fit
³²⁴http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
³²⁵http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components
³²⁶http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components_based_on_properties
³²⁷http://emberjs.com/guides/cookbook/user_interface_and_interaction/focusing_a_textfield_after_its_been_inserted
³²⁸http://emberjs.com/guides/cookbook/user_interface_and_interaction/displaying_formatted_dates_with_moment_js
³²⁹http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_

update
³³⁰http://emberjs.com/guides/cookbook/user_interface_and_interaction/using_modal_dialogs
³³¹http://emberjs.com/guides/cookbook/user_interface_and_interaction/resetting_scroll_on_route_changes

http://emberjs.com/guides/cookbook/contributing
http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
http://emberjs.com/guides/cookbook/contributing/participating_if_you_know_ember
http://emberjs.com/guides/cookbook/contributing/participating_if_you_dont_know_ember
http://emberjs.com/guides/cookbook/contributing/deciding_if_a_recipe_is_a_good_fit
http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components_based_on_properties
http://emberjs.com/guides/cookbook/user_interface_and_interaction/focusing_a_textfield_after_its_been_inserted
http://emberjs.com/guides/cookbook/user_interface_and_interaction/displaying_formatted_dates_with_moment_js
http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_update
http://emberjs.com/guides/cookbook/user_interface_and_interaction/using_modal_dialogs
http://emberjs.com/guides/cookbook/user_interface_and_interaction/resetting_scroll_on_route_changes
http://emberjs.com/guides/cookbook/contributing
http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
http://emberjs.com/guides/cookbook/contributing/participating_if_you_know_ember
http://emberjs.com/guides/cookbook/contributing/participating_if_you_dont_know_ember
http://emberjs.com/guides/cookbook/contributing/deciding_if_a_recipe_is_a_good_fit
http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components_based_on_properties
http://emberjs.com/guides/cookbook/user_interface_and_interaction/focusing_a_textfield_after_its_been_inserted
http://emberjs.com/guides/cookbook/user_interface_and_interaction/displaying_formatted_dates_with_moment_js
http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_update
http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_update
http://emberjs.com/guides/cookbook/user_interface_and_interaction/using_modal_dialogs
http://emberjs.com/guides/cookbook/user_interface_and_interaction/resetting_scroll_on_route_changes

Cookbook 245

Event Handling & Data Binding

1. Binding Properties of an Object to Its Own Properties³³²

Helpers & Components

1. Creating Reusable Social Share Buttons³³³
2. A Spinning Button for Asynchronous Actions³³⁴
3. Adding Google Analytics Tracking³³⁵

Working with Objects

1. Incrementing Or Decrementing A Property³³⁶
2. Setting Multiple Properties At Once³³⁷
3. Continuous Redrawing of Views³³⁸

If you would like to see more recipes, take a look at the Suggesting A Recipe³³⁹ section.

Contributing

The Ember Cookbook provides answers and solutions to common Ember questions and problems.
Anyone is welcome to contribute³⁴⁰.

If you are new to Ember, we recommend that you spend some time reading the guides and tutorials
before coming to the Cookbook. Cookbook recipes assume that you have a basic understanding of
Ember’s concepts.

If you have experience with Ember and would like to contribute to the Cookbook, the discussion
section of each recipe is a great place to start.

Recipes

1. Understanding the Cookbook Format³⁴¹
2. Participating If You Know Ember³⁴²
3. Participating If You Don’t Know Ember³⁴³

³³²http://emberjs.com/guides/cookbook/event_handling_and_data_binding/binding_properties_of_an_object_to_its_own_properties
³³³http://emberjs.com/guides/cookbook/helpers_and_components/creating_reusable_social_share_buttons
³³⁴http://emberjs.com/guides/cookbook/helpers_and_components/spin_button_for_asynchronous_actions
³³⁵http://emberjs.com/guides/cookbook/helpers_and_components/adding_google_analytics_tracking
³³⁶http://emberjs.com/guides/cookbook/working_with_objects/incrementing_or_decrementing_a_property
³³⁷http://emberjs.com/guides/cookbook/working_with_objects/setting_multiple_properties_at_once
³³⁸http://emberjs.com/guides/cookbook/working_with_objects/continuous_redrawing_of_views
³³⁹http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
³⁴⁰http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
³⁴¹http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
³⁴²http://emberjs.com/guides/cookbook/contributing/participating_if_you_know_ember
³⁴³http://emberjs.com/guides/cookbook/contributing/participating_if_you_dont_know_ember

http://emberjs.com/guides/cookbook/event_handling_and_data_binding/binding_properties_of_an_object_to_its_own_properties
http://emberjs.com/guides/cookbook/helpers_and_components/creating_reusable_social_share_buttons
http://emberjs.com/guides/cookbook/helpers_and_components/spin_button_for_asynchronous_actions
http://emberjs.com/guides/cookbook/helpers_and_components/adding_google_analytics_tracking
http://emberjs.com/guides/cookbook/working_with_objects/incrementing_or_decrementing_a_property
http://emberjs.com/guides/cookbook/working_with_objects/setting_multiple_properties_at_once
http://emberjs.com/guides/cookbook/working_with_objects/continuous_redrawing_of_views
http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
http://emberjs.com/guides/cookbook/contributing/participating_if_you_know_ember
http://emberjs.com/guides/cookbook/contributing/participating_if_you_dont_know_ember
http://emberjs.com/guides/cookbook/event_handling_and_data_binding/binding_properties_of_an_object_to_its_own_properties
http://emberjs.com/guides/cookbook/helpers_and_components/creating_reusable_social_share_buttons
http://emberjs.com/guides/cookbook/helpers_and_components/spin_button_for_asynchronous_actions
http://emberjs.com/guides/cookbook/helpers_and_components/adding_google_analytics_tracking
http://emberjs.com/guides/cookbook/working_with_objects/incrementing_or_decrementing_a_property
http://emberjs.com/guides/cookbook/working_with_objects/setting_multiple_properties_at_once
http://emberjs.com/guides/cookbook/working_with_objects/continuous_redrawing_of_views
http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
http://emberjs.com/guides/cookbook/contributing/understanding_the_cookbook_format
http://emberjs.com/guides/cookbook/contributing/participating_if_you_know_ember
http://emberjs.com/guides/cookbook/contributing/participating_if_you_dont_know_ember

Cookbook 246

4. Deciding If A Recipe is a Good Fit³⁴⁴
5. Suggesting A Recipe³⁴⁵

User Interface & Interaction

Here are some recipes that will help you provide a better user experience.

1. Adding CSS Classes to Your Components³⁴⁶
2. Adding CSS Classes to Your Components Based on Properties³⁴⁷
3. Focusing a Textfield after It’s Been Inserted³⁴⁸
4. Displaying Formatted Dates With Moment.js³⁴⁹
5. Specifying Data-Driven Areas of Templates That Do Not Need To Update³⁵⁰
6. Using Modal Dialogs³⁵¹
7. Resetting scroll on route changes³⁵²

Event Handling & Data Binding

Problem

You want to base the value of one property on the value of another property.

Solution

Use one of the computed property macros like Ember.computed.alias or Ember.computed.gte

³⁴⁴http://emberjs.com/guides/cookbook/contributing/deciding_if_a_recipe_is_a_good_fit
³⁴⁵http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
³⁴⁶http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components
³⁴⁷http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components_based_on_properties
³⁴⁸http://emberjs.com/guides/cookbook/user_interface_and_interaction/focusing_a_textfield_after_its_been_inserted
³⁴⁹http://emberjs.com/guides/cookbook/user_interface_and_interaction/displaying_formatted_dates_with_moment_js
³⁵⁰http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_

update
³⁵¹http://emberjs.com/guides/cookbook/user_interface_and_interaction/using_modal_dialogs
³⁵²http://emberjs.com/guides/cookbook/user_interface_and_interaction/resetting_scroll_on_route_changes

http://emberjs.com/guides/cookbook/contributing/deciding_if_a_recipe_is_a_good_fit
http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components_based_on_properties
http://emberjs.com/guides/cookbook/user_interface_and_interaction/focusing_a_textfield_after_its_been_inserted
http://emberjs.com/guides/cookbook/user_interface_and_interaction/displaying_formatted_dates_with_moment_js
http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_update
http://emberjs.com/guides/cookbook/user_interface_and_interaction/using_modal_dialogs
http://emberjs.com/guides/cookbook/user_interface_and_interaction/resetting_scroll_on_route_changes
http://emberjs.com/guides/cookbook/contributing/deciding_if_a_recipe_is_a_good_fit
http://emberjs.com/guides/cookbook/contributing/suggesting_a_recipe
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components
http://emberjs.com/guides/cookbook/user_interface_and_interaction/adding_css_classes_to_your_components_based_on_properties
http://emberjs.com/guides/cookbook/user_interface_and_interaction/focusing_a_textfield_after_its_been_inserted
http://emberjs.com/guides/cookbook/user_interface_and_interaction/displaying_formatted_dates_with_moment_js
http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_update
http://emberjs.com/guides/cookbook/user_interface_and_interaction/specifying_data_driven_areas_of_templates_that_do_not_need_to_update
http://emberjs.com/guides/cookbook/user_interface_and_interaction/using_modal_dialogs
http://emberjs.com/guides/cookbook/user_interface_and_interaction/resetting_scroll_on_route_changes

Cookbook 247

1 App.Person = Ember.Object.extend({

2 firstName : null,

3 lastName : null,

4 surname : Ember.computed.alias("lastName"),

5 eligibleForRetirement: Ember.computed.gte("age", 65)

6 });

Discussion

Ember.js includes a number of macros that will help create properties whose values are based on
the values of other properties, correctly connecting them with bindings so they remain updated
when values change. These all are stored on the Ember.computed object and documented in the API
documentation³⁵³

Example

JS Bin³⁵⁴

Helpers & Components

Problem

You want to create a reusable Tweet button³⁵⁵ for your application.

Solution

Write a custom component that renders the Tweet button with specific attributes passed in.

1 {{share-twitter data-url="http://emberjs.com"

2 data-text="EmberJS Components are Amazing!"

3 data-size="large"

4 data-hashtags="emberjs"}}

³⁵³http://emberjs.com/api/#method_computed
³⁵⁴http://jsbin.com/AfufoSO
³⁵⁵https://dev.twitter.com/docs/tweet-button

http://emberjs.com/api/#method_computed
http://emberjs.com/api/#method_computed
http://jsbin.com/AfufoSO
https://dev.twitter.com/docs/tweet-button
http://emberjs.com/api/#method_computed
http://jsbin.com/AfufoSO
https://dev.twitter.com/docs/tweet-button

Cookbook 248

1 App.ShareTwitterComponent = Ember.Component.extend({

2 tagName: 'a',

3 classNames: 'twitter-share-button',

4 attributeBindings: ['data-size', 'data-url', 'data-text', 'data-hashtags']

5 });

Include Twitter’s widget code in your HTML:

1 <script type="text/javascript" src="http://platform.twitter.com/widgets.js" id="\

2 twitter-wjs"></script>

Discussion

Twitter’s widget library expects to find an <a> tag on the page with specific data- attributes applied.
It takes the values of these attributes and, when the <a> tag is clicked, opens an iFrame for twitter
sharing.

The share-twitter component takes four options that match the four attributes for the resulting
<a> tag: data-url, data-text, data-size, data-hashtags. These options and their values become
properties on the component object.

The component defines certain attributes of its HTML representation as bound to properties of the
object through its attributeBindings property. When the values of these properties change, the
component’s HTML element’s attributes will be updated to match the new values.

An appropriate tag and css class are applied through the tagName and classNames properties.

Example

JS Bin³⁵⁶

Working with Objects

Here are some recipes to help you understand working with Ember Objects.

1. Incrementing Or Decrementing A Property³⁵⁷
2. Setting Multiple Properties At Once³⁵⁸
3. Continuous Redrawing of Views³⁵⁹

³⁵⁶http://jsbin.com/OpocEPu
³⁵⁷http://emberjs.com/guides/cookbook/working_with_objects/incrementing_or_decrementing_a_property
³⁵⁸http://emberjs.com/guides/cookbook/working_with_objects/setting_multiple_properties_at_once
³⁵⁹http://emberjs.com/guides/cookbook/working_with_objects/continuous_redrawing_of_views

http://jsbin.com/OpocEPu
http://emberjs.com/guides/cookbook/working_with_objects/incrementing_or_decrementing_a_property
http://emberjs.com/guides/cookbook/working_with_objects/setting_multiple_properties_at_once
http://emberjs.com/guides/cookbook/working_with_objects/continuous_redrawing_of_views
http://jsbin.com/OpocEPu
http://emberjs.com/guides/cookbook/working_with_objects/incrementing_or_decrementing_a_property
http://emberjs.com/guides/cookbook/working_with_objects/setting_multiple_properties_at_once
http://emberjs.com/guides/cookbook/working_with_objects/continuous_redrawing_of_views

Understanding Ember.js
The View Layer

This guide goes into extreme detail about the Ember.js view layer. It is intended for an experienced
Ember developer, and includes details that are unnecessary for getting started with Ember.

Ember.js has a sophisticated system for creating, managing and rendering a hierarchy of views that
connect to the browser’s DOM. Views are responsible for responding to user events, like clicks,
drags, and scrolls, as well as updating the contents of the DOM when the data underlying the view
changes.

View hierarchies are usually created by evaluating a Handlebars template. As the template is
evaluated, child views are added. As the templates for those child views are evaluated, they may
have child views added, and so on, until an entire hierarchy is created.

Even if you do not explicitly create child views from your Handlebars templates, Ember.js internally
uses the view system to update bound values. For example, every Handlebars expression {{value}}

creates a view behind-the-scenes that knows how to update the bound value if it changes.

You can also dynamically make changes to the view hierarchy at application runtime using the
Ember.ContainerView class. Rather than being template-driven, a container view exposes an array
of child view instances that can be manually managed.

Views and templates work in tandem to provide a robust system for creating whatever user interface
you dream up. End users should be isolated from the complexities of things like timing issues while
rendering and event propagation. Application developers should be able to describe their UI once,
as a string of Handlebars markup, and then carry on with their application without having to worry
about making sure that it remains up-to-date.

What problems does it solve?

Child Views

In a typical client-side application, views may represent elements nested inside of each other in the
DOM. In the naïve solution to this problem, separate view objects represent each DOM element, and
ad-hoc references help the various view object keep track of the views conceptually nested inside of
them.

Here is a simple example, representing one main app view, a collection nested inside of it, and
individual items nested inside of the collection.

Understanding Ember.js 250

This system works well at first glance, but imagine that we want to open Joe’s Lamprey Shack at
8am instead of 9am. In this situation, we will want to re-render the App View. Because the developer
needed to build up the references to the children on an ad-hoc basis, this re-rendering process has
several problems.

In order to re-render the App View, the App View must also manually re-render the child views
and re-insert them into App View’s element. If implemented perfectly, this process works well,
but it relies upon a perfect, ad hoc implementation of a view hierarchy. If any single view fails to
implement this precisely, the entire re-render will fail.

In order to avoid these problems, Ember’s view hierarchy has the concept of child views baked in.

When the App View re-renders, Ember is responsible for re-rendering and inserting the child views,

Understanding Ember.js 251

not application code. This also means that Ember can perform any memory management for you,
such as cleaning up observers and bindings.

Not only does this eliminate quite a bit of boilerplate code, but it eliminates the possibility that an
imperfectly implemented view hierarchy will cause unexpected failures.

Event Delegation

In the past, web developers have added event listeners to individual elements in order to knowwhen
the user interacts with them. For example, you might have a <div> element on which you register
a function that gets called when the user clicks it.

However, this approach often does not scale when dealing with large numbers of interactive
elements. For example, imagine a with 100 s in it, with a delete button next to each item.
Since the behavior is the same for all of these items, it would be inefficient to create 100 event
listeners, one for each delete button.

To solve this problem, developers discovered a technique called “event delegation”. Instead of
registering a listener on each element in question, you can register a single listener for the containing
element and use event.target to identify which element the user clicked on.

Understanding Ember.js 252

Implementing this is a bit tricky, because some events (like focus, blur and change) don’t bubble.
Fortunately, jQuery has solved this problem thoroughly; using jQuery’s on method reliably works
for all native browser events.

Other JavaScript frameworks tackle this problem in one of two ways. In the first approach, they ask
you to implement the naïve solution yourself, creating a separate view for each element. When you
create the view, it sets up an event listener on the view’s element. If you had a list of 500 items, you
would create 500 views and each would set up a listener on its own element.

In the second approach, the framework builds in event delegation at the view level. When creating
a view, you can supply a list of events to delegate and a method to call when the event occurs.
This leaves identifying the context of the click (for example, which item in the list) to the method
receiving the event.

You are now faced with an uncomfortable choice: create a new view for each item and lose the
benefits of event delegation, or create a single view for all of the items and have to store information
about the underlying JavaScript object in the DOM.

In order to solve this problem, Ember delegates all events to the application’s root element (usually
the document body) using jQuery. When an event occurs, Ember identifies the nearest view that
handles the event and invokes its event handler. This means that you can create views to hold a
JavaScript context, but still get the benefit of event delegation.

Further, because Ember registers only one event for the entire Ember application, creating new views
never requires setting up event listeners, making re-renders efficient and less error-prone. When a

Understanding Ember.js 253

view has child views, this also means that there is no need to manually undelegate views that the
re-render process replaces.

The Rendering Pipeline

Most web applications specify their user interface using the markup of a particular templating
language. For Ember.js, we’ve done the work to make templates written using the Handlebars
templating language automatically update when the values used inside of them are changed.

While the process of displaying a template is automatic for developers, under the hood there
are a series of steps that must be taken to go from the original template to the final, live DOM
representation that the user sees.

This is the approximate lifecycle of an Ember view:

1. Template Compilation The application’s templates are loaded over the network or as part of
the application payload in string form. When the application loads, it sends the template string to
Handlebars to be compiled into a function. Once compiled, the template function is saved, and can
be used by multiple views repeatedly, each time they need to re-render.

This step may be omitted in applications where the templates are pre-compiled on the server. In
those cases, the template is transferred not as the original, human-readable template string but as
the compiled code.

Because Ember is responsible for template compilation, you don’t have to do any additional work
to ensure that compiled templates are reused.

2. String Concatenation A view’s rendering process is kickstarted when the application calls
append or appendTo on the view. Calling append or appendTo schedules the view to be rendered and
inserted later. This allows any deferred logic in your application (such as binding synchronization)
to happen before rendering the element.

To begin the rendering process, Ember creates a RenderBuffer and gives it to the view to append its
contents to. During this process, a view can create and render child views.When it does so, the parent
view creates and assigns a RenderBuffer for the child, and links it to the parent’s RenderBuffer.

Understanding Ember.js 254

Ember flushes the binding synchronization queue before rendering each view. By syncing bindings
before rendering each view, Ember guarantees that it will not render stale data it needs to replace
right away.

Once the main view has finished rendering, the render process has created a tree of views (the “view
hierarchy”), linked to a tree of buffers. By walking down the tree of buffers and converting them
into Strings, we have a String that we can insert into the DOM.

Here is a simple example:

In addition to children (Strings and other RenderBuffers), a RenderBuffer also encapsulates the
element’s tag name, id, classes, style, and other attributes. This makes it possible for the render
process to modify one of these properties (style, for example), even after its child Strings have
rendered. Because many of these properties are controlled via bindings (e.g. using bind-attr), this
makes the process robust and transparent.

Understanding Ember.js 255

3. Element Creation and Insertion At the end of the rendering process, the root view asks the
RenderBuffer for its element. The RenderBuffer takes its completed string and uses jQuery to
convert it into an element. The view assigns that element to its element property and places it into
the correct place in the DOM (the location specified in appendTo or the application’s root element if
the application used append).

While the parent view assigns its element directly, each child views looks up its element lazily. It
does this by looking for an element whose id matches its elementId property. Unless explicitly
provided, the rendering process generates an elementId property and assigns its value to the view’s
RenderBuffer, which allows the view to find its element as needed.

4. Re-Rendering After the view inserts itself into the DOM, either Ember or the application may
want to re-render the view. They can trigger a re-render by calling the rerendermethod on a view.

Rerendering will repeat steps 2 and 3 above, with two exceptions:

• Instead of inserting the element into an explicitly specified location, rerender replaces the
existing element with the new element.

• In addition to rendering a new element, it also removes the old element and destroys its
children. This allows Ember to automatically handle unregistering appropriate bindings and
observers when re-rendering a view. This makes observers on a path more viable, because the
process of registering and unregistering all of the nested observers is automatic.

The most common cause of a view re-render is when the value bound to a Handlebars expression
({{foo}}) changes. Internally, Ember creates a simple view for each expression, and registers an
observer on the path. When the path changes, Ember updates the area of the DOM with the new
value.

Another common case is an {{#if}} or {{#with}} block. When rendering a template, Ember creates
a virtual view for these block helpers. These virtual views do not appear in the publicly available
view hierarchy (when getting parentView and childViews from a view), but they exist to enable
consistent re-rendering.

When the path passed to an {{#if}} or {{#with}} changes, Ember automatically re-renders the
virtual view, which will replace its contents, and importantly, destroy all child views to free up their
memory.

In addition to these cases, the applicationmay sometimes want to explicitly re-render a view (usually
a ContainerView, see below). In this case, the application can call rerender directly, and Ember will
queue up a re-rendering job, with the same semantics.

The process looks something like:

Understanding Ember.js 256

The View Hierarchy

Parent and Child Views

As Ember renders a templated view, it will generate a view hierarchy. Let’s assume we have a
template form.

1 {{view App.Search placeholder="Search"}}

2 {{#view Ember.Button}}Go!{{/view}}

And we insert it into the DOM like this:

1 var view = Ember.View.create({

2 templateName: 'form'

3 }).append();

This will create a small view hierarchy that looks like this:

You can move around in the view hierarchy using the parentView and childViews properties.

1 var children = view.get('childViews') // [<App.Search>, <Ember.Button>]

2 children.objectAt(0).get('parentView') // view

One common use of the parentView method is inside of an instance of a child view.

Understanding Ember.js 257

1 App.Search = Ember.View.extend({

2 didInsertElement: function() {

3 // this.get('parentView') in here references `view`

4 }

5 })

Lifecycle Hooks

In order to make it easy to take action at different points during your view’s lifecycle, there are
several hooks you can implement.

• willInsertElement: This hook is called after the view has been rendered but before it has
been inserted into the DOM. It does not provide access to the view’s element.

• didInsertElement: This hook is called immediately after the view has been inserted into the
DOM. It provides access to the view’s element and is most useful for integration with an
external library. Any explicit DOM setup code should be limited to this hook.

• willDestroyElement: This hook is called immediately before the element is removed from
the DOM. This is your opportunity to tear down any external state associated with the DOM
node. Like didInsertElement, it is most useful for integration with external libraries.

• willClearRender: This hook is called immediately before a view is re-rendered. This is useful
if you want to perform some teardown immediately before a view is re-rendered.

• becameVisible: This hook is called after a view’s isVisible property, or one of its ancestor’s
isVisible property, changes to true and the associated element becomes visible. Note that
this hook is only reliable if all visibility is routed through the isVisible property.

• becameHidden: This hook is called after a view’s isVisible property, or one of its ancestor’s
isVisible property, changes to false and the associated element becomes hidden. Note that
this hook is only reliable if all visibility is routed through the isVisible property.

Apps can implement these hooks by defining a method by the hook’s name on the view. Alterna-
tively, it is possible to register a listener for the hook on a view:

1 view.on('willClearRender', function() {

2 // do something with view

3 });

Virtual Views

As described above, Handlebars creates views in the view hierarchy to represent bound values. Every
time you use a Handlebars expression, whether it’s a simple value or a block helper like {{#with}}
or {{#if}}, Handlebars creates a new view.

Because Ember uses these views for internal bookkeeping only, they are hidden from the view’s
public parentView and childViewsAPI. The public view hierarchy reflects only views created using
the {{view}} helper or through ContainerView (see below).

For example, consider the following Handlebars template:

Understanding Ember.js 258

1 <h1>Joe's Lamprey Shack</h1>

2 {{controller.restaurantHours}}

3

4 {{#view App.FDAContactForm}}

5 If you are experiencing discomfort from eating at Joe's Lamprey Shack,

6 please use the form below to submit a complaint to the FDA.

7

8 {{#if controller.allowComplaints}}

9 {{view Ember.TextArea valueBinding="controller.complaint"}}

10 <button {{action 'submitComplaint'}}>Submit</button>

11 {{/if}}

12 {{/view}}

Rendering this template would create a hierarchy like this:

Behind the scenes, Ember tracks additional virtual views for the Handlebars expressions:

From inside of the TextArea, the parentViewwould point to the FDAContactForm and the FDAContactForm’s
childViews would be an array of the single TextArea view.

You can see the internal view hierarchy by asking for the _parentView or _childViews, which will
include virtual views:

1 var _childViews = view.get('_childViews');

2 console.log(_childViews.objectAt(0).toString());

3 //> <Ember._HandlebarsBoundView:ember1234>

Understanding Ember.js 259

Warning! You may not rely on these internal APIs in application code. They may change at any
time and have no public contract. The return value may not be observable or bindable. It may not
be an Ember object. If you feel the need to use them, please contact us so we can expose a better
public API for your use-case.

Bottom line: This API is like XML. If you think you have a use for it, you may not yet understand
the problem enough. Reconsider!

Event Bubbling

One responsibility of views is to respond to primitive user events and translate them into events that
have semantic meaning for your application.

For example, a delete button translates the primitive click event into the application-specific
“remove this item from an array.”

In order to respond to user events, create a new view subclass that implements that event as a
method:

1 App.DeleteButton = Ember.View.create({

2 click: function(event) {

3 var item = this.get('model');

4 this.get('controller').send('deleteItem', item);

5 }

6 });

When you create a new Ember.Application instance, it registers an event handler for each
native browser event using jQuery’s event delegation API. When the user triggers an event, the
application’s event dispatcher will find the view nearest to the event target that implements the
event.

A view implements an event by defining a method corresponding to the event name. When the
event name is made up of multiple words (like mouseup) the method name should be the camelized
form of the event name (mouseUp).

Events will bubble up the view hierarchy until the event reaches the root view. An event handler
can stop propagation using the same techniques as normal jQuery event handlers:

• return false from the method
• event.stopPropagation

For example, imagine you defined the following view classes:

Understanding Ember.js 260

1 App.GrandparentView = Ember.View.extend({

2 click: function() {

3 console.log('Grandparent!');

4 }

5 });

6

7 App.ParentView = Ember.View.extend({

8 click: function() {

9 console.log('Parent!');

10 return false;

11 }

12 });

13

14 App.ChildView = Ember.View.extend({

15 click: function() {

16 console.log('Child!');

17 }

18 });

And here’s the Handlebars template that uses them:

1 {{#view App.GrandparentView}}

2 {{#view App.ParentView}}

3 {{#view App.ChildView}}

4 <h1>Click me!</h1>

5 {{/view}}

6 {{/view}}

7 {{/view}}

If you clicked on the <h1>, you’d see the following output in your browser’s console:

1 Child!

2 Parent!

You can see that Ember invokes the handler on the child-most view that received the event. The event
continues to bubble to the ParentView, but does not reach the GrandparentView because ParentView
returns false from its event handler.

You can use normal event bubbling techniques to implement familiar patterns. For example, you
could implement a FormView that defines a submitmethod. Because the browser triggers the submit
event when the user hits enter in a text field, defining a submit method on the form view will “just
work”.

Understanding Ember.js 261

1 App.FormView = Ember.View.extend({

2 tagName: "form",

3

4 submit: function(event) {

5 // will be invoked whenever the user triggers

6 // the browser's `submit` method

7 }

8 });

1 {{#view App.FormView}}

2 {{view Ember.TextField valueBinding="controller.firstName"}}

3 {{view Ember.TextField valueBinding="controller.lastName"}}

4 <button type="submit">Done</button>

5 {{/view}}

Adding New Events

Ember comes with built-in support for the following native browser events:

You can add additional events to the event dispatcher when you create a new application:

1 App = Ember.Application.create({

2 customEvents: {

3 // add support for the loadedmetadata media

4 // player event

5 'loadedmetadata': "loadedMetadata"

6 }

7 });

In order for this to work for a custom event, the HTML5 spec must define the event as “bubbling”,
or jQuery must have provided an event delegation shim for the event.

Templated Views

As you’ve seen so far in this guide, the majority of views that you will use in your application are
backed by a template. When using templates, you do not need to programmatically create your view
hierarchy because the template creates it for you.

While rendering, the view’s template can append views to its child views array. Internally, the
template’s {{view}} helper calls the view’s appendChild method.

Calling appendChild does two things:

Understanding Ember.js 262

1. Adds the child view to the childViews array.
2. Immediately renders the child view and adds it to the parent’s render buffer.

You may not call appendChild on a view after it has left the rendering state. A template renders
“mixed content” (both views and plain text) so the parent view does not know exactly where to
insert the new child view once the rendering process has completed.

In the example above, imagine trying to insert a new view inside of the parent view’s childViews
array. Should it go immediately after the closing </div> of App.MyView? Or should it go after the
closing </div> of the entire view? There is no good answer that will always be correct.

Because of this ambiguity, the only way to create a view hierarchy using templates is via the
{{view}} helper, which always inserts views in the right place relative to any plain text.

While this works for most situations, occasionally you may want to have direct, programmatic
control of a view’s children. In that case, you can use Ember.ContainerView, which explicitly exposes
a public API for doing so.

Container Views

Container views contain no plain text. They are composed entirely of their child views (which may
themselves be template-backed).

ContainerView exposes two public APIs for changing its contents:

Understanding Ember.js 263

1. A writable childViews array into which you can insert Ember.View instances.
2. A currentView property that, when set, inserts the new value into the child views array. If

there was a previous value of currentView, it is removed from the childViews array.

Here is an example of using the childViews API to create a view that starts with a hypothetical
DescriptionView and can add a new button at any time by calling the addButton method:

1 App.ToolbarView = Ember.ContainerView.create({

2 init: function() {

3 var childViews = this.get('childViews');

4 var descriptionView = App.DescriptionView.create();

5

6 childViews.pushObject(descriptionView);

7 this.addButton();

8

9 return this._super();

10 },

11

12 addButton: function() {

13 var childViews = this.get('childViews');

14 var button = Ember.ButtonView.create();

15

16 childViews.pushObject(button);

17 }

18 });

As you can see in the example above, we initialize the ContainerView with two views, and can add
additional views during runtime. There is a convenient shorthand for doing this view setup without
having to override the init method:

1 App.ToolbarView = Ember.ContainerView.create({

2 childViews: ['descriptionView', 'buttonView'],

3

4 descriptionView: App.DescriptionView,

5 buttonView: Ember.ButtonView,

6

7 addButton: function() {

8 var childViews = this.get('childViews');

9 var button = Ember.ButtonView.create();

10

11 childViews.pushObject(button);

12 }

13 });

Understanding Ember.js 264

As you can see above, when using this shorthand, you specify the childViews as an array of strings.
At initialization time, each of the strings is used as a key to look up a view instance or class. That
view is automatically instantiated, if necessary, and added to the childViews array.

Template Scopes

Standard Handlebars templates have the concept of a context–the object from which expressions
will be looked up.

Some helpers, like {{#with}}, change the context inside their block. Others, like {{#if}}, preserve
the context. These are called “context-preserving helpers.”

Understanding Ember.js 265

When a Handlebars template in an Ember app uses an expression ({{#if foo.bar}}), Ember will
automatically set up an observer for that path on the current context.

If the object referenced by the path changes, Ember will automatically re-render the block with
the appropriate context. In the case of a context-preserving helper, Ember will re-use the original
context when re-rendering the block. Otherwise, Ember will use the new value of the path as the
context.

1 {{#if controller.isAuthenticated}}

2 <h1>Welcome {{controller.name}}</h1>

3 {{/if}}

4

5 {{#with controller.user}}

6 <p>You have {{notificationCount}} notifications.</p>

7 {{/with}}

In the above template, when the isAuthenticated property changes from false to true, Ember will
render the block, using the original outer scope as its context.

The {{#with}} helper changes the context of its block to the user property on the current
controller. When the user property changes, Ember re-renders the block, using the new value of
controller.user as its context.

View Scope

In addition to the Handlebars context, templates in Ember also have the notion of the current view.
No matter what the current context is, the view property always references the closest view.

Note that the view property never references the internal views created for block expressions like
{{#if}}. This allows you to differentiate between Handlebars contexts, which always work the way
they do in vanilla Handlebars, and the view hierarchy.

Because view points to an Ember.View instance, you can access any properties on the view by using
an expression like view.propertyName. You can get access to a view’s parent using view.parentView.

For example, imagine you had a view with the following properties:

1 App.MenuItemView = Ember.View.create({

2 templateName: 'menu_item_view',

3 bulletText: '*'

4 });

…and the following template:

Understanding Ember.js 266

1 {{#with controller}}

2 {{view.bulletText}} {{name}}

3 {{/with}}

Even though the Handlebars context has changed to the current controller, you can still access the
view’s bulletText by referencing view.bulletText.

Template Variables

So far in this guide, we’ve been handwaving around the use of the controller property in our
Handlebars templates. Where does it come from?

Handlebars contexts in Ember can inherit variables from their parent contexts. Before Ember looks
up a variable in the current context, it first checks in its template variables. As a template creates
new Handlebars scope, they automatically inherit the variables from their parent scope.

Ember defines these view and controller variables, so they are always found first when an
expression uses the view or controller names.

As described above, Ember sets the view variable on the Handlebars context whenever a template
uses the {{#view}} helper. Initially, Ember sets the view variable to the view rendering the template.

Ember sets the controller variable on the Handlebars context whenever a rendered view has a
controller property. If a view has no controller property, it inherits the controller variable
from the most recent view with one.

Other Variables

Handlebars helpers in Embermay also specify variables. For example, the {{#with controller.person

as tom}} form specifies a tom variable that descendent scopes can access. Even if a child context
has a tom property, the tom variable will supersede it.

This form has one major benefit: it allows you to shorten long paths without losing access to the
parent scope.

It is especially important in the {{#each}} helper, which provides the {{#each person in people}}

form. In this form, descendent context have access to the person variable, but remain in the same
scope as where the template invoked the each.

Understanding Ember.js 267

1 {{#with controller.preferences}}

2 <h1>Title</h1>

3

4 {{#each person in controller.people}}

5 {{! prefix here is controller.preferences.prefix }}

6 {{prefix}}: {{person.fullName}}

7 {{/each}}

8

9 {{/with}}

Note that these variables inherit through ContainerViews, even though they are not part of the
Handlebars context hierarchy.

Accessing Template Variables from Views

In most cases, you will need to access these template variables from inside your templates. In some
unusual cases, you may want to access the variables in-scope from your view’s JavaScript code.

You can do this by accessing the view’s templateVariables property, which will return a JavaScript
object containing the variables that were in scope when the viewwas rendered. ContainerViews also
have access to this property, which references the template variables in the most recent template-
backed view.

At present, you may not observe or bind a path containing templateVariables.

Managing Asynchrony

Many Ember concepts, like bindings and computed properties, are designed to help manage
asynchronous behavior.

Without Ember

We’ll start by taking a look at ways to manage asynchronous behavior using jQuery or event-based
MVC frameworks.

Let’s use the most common asynchronous behavior in a web application, making an Ajax request,
as an example. The browser APIs for making Ajax requests provide an asynchronous API. jQuery’s
wrapper does as well:

Understanding Ember.js 268

1 jQuery.getJSON('/posts/1', function(post) {

2 $("#post").html("<h1>" + post.title + "</h1>" +

3 "<div>" + post.body + "</div>");

4 });

In a raw jQuery application, you would use this callback to make whatever changes you needed to
make to the DOM.

When using an event-based MVC framework, you move the logic out of the callback and into
model and view objects. This improves things, but doesn’t get rid of the need to explicitly deal
with asynchronous callbacks:

1 Post = Model.extend({

2 author: function() {

3 return [this.salutation, this.name].join(' ')

4 },

5

6 toJSON: function() {

7 var json = Model.prototype.toJSON.call(this);

8 json.author = this.author();

9 return json;

10 }

11 });

12

13 PostView = View.extend({

14 init: function(model) {

15 model.bind('change', this.render, this);

16 },

17

18 template: _.template("<h1><%= title %></h1><h2><%= author %></h2><div><%= body\

19 %></div>"),

20

21 render: function() {

22 jQuery(this.element).html(this.template(this.model.toJSON());

23 return this;

24 }

25 });

26

27 var post = Post.create();

28 var postView = PostView.create({ model: post });

29 jQuery('#posts').append(postView.render().el);

30

31 jQuery.getJSON('/posts/1', function(json) {

Understanding Ember.js 269

32 // set all of the JSON properties on the model

33 post.set(json);

34 });

This example doesn’t use any particular JavaScript library beyond jQuery, but its approach is typical
of event-driven MVC frameworks. It helps organize the asynchronous events, but asynchronous
behavior is still the core programming model.

Ember’s Approach

In general, Ember’s goal is to eliminate explicit forms of asynchronous behavior. As we’ll see later,
this gives Ember the ability to coalesce multiple events that have the same result.

It also provides a higher level of abstraction, eliminating the need tomanually register and unregister
event listeners to perform most common tasks.

You would normally use ember-data for this example, but let’s see how you would model the above
example using jQuery for Ajax in Ember.

1 App.Post = Ember.Object.extend({

2

3 });

4

5 App.PostController = Ember.ObjectController.extend({

6 author: function() {

7 return [this.get('salutation'), this.get('name')].join(' ');

8 }.property('salutation', 'name')

9 });

10

11 App.PostView = Ember.View.extend({

12 // the controller is the initial context for the template

13 controller: null,

14 template: Ember.Handlebars.compile("<h1>{{title}}</h1><h2>{{author}}</h2><div>\

15 {{body}}</div>")

16 });

17

18 var post = App.Post.create();

19 var postController = App.PostController.create({ model: post });

20

21 App.PostView.create({ controller: postController }).appendTo('body');

22

23 jQuery.getJSON("/posts/1", function(json) {

24 post.setProperties(json);

25 });

Understanding Ember.js 270

In contrast to the above examples, the Ember approach eliminates the need to explicitly register an
observer when the post’s properties change.

The {{title}}, {{author}} and {{body}} template elements are bound to those properties on the
PostController. When the PostController’s model changes, it automatically propagates those
changes to the DOM.

Using a computed property for author eliminated the need to explicitly invoke the computation in
a callback when the underlying property changed.

Instead, Ember’s binding system automatically follows the trail from the salutation and name set
in the getJSON callback to the computed property in the PostController and all the way into the
DOM.

Benefits

Because Ember is usually responsible for propagating changes, it can guarantee that a single change
is only propagated one time in response to each user event.

Let’s take another look at the author computed property.

1 App.PostController = Ember.ObjectController.extend({

2 author: function() {

3 return [this.get('salutation'), this.get('name')].join(' ');

4 }.property('salutation', 'name')

5 });

Because we have specified that it depends on both salutation and name, changes to either of those
two dependencies will invalidate the property, which will trigger an update to the {{author}}

property in the DOM.

Imagine that in response to a user event, I do something like this:

1 post.set('salutation', "Mrs.");

2 post.set('name', "Katz");

You might imagine that these changes will cause the computed property to be invalidated twice,
causing two updates to the DOM. And in fact, that is exactly what would happen when using an
event-driven framework.

In Ember, the computed property will only recompute once, and the DOM will only update once.

How?

When you make a change to a property in Ember, it does not immediately propagate that change.
Instead, it invalidates any dependent properties immediately, but queues the actual change to happen
later.

Understanding Ember.js 271

Changing both the salutation and name properties invalidates the author property twice, but the
queue is smart enough to coalesce those changes.

Once all of the event handlers for the current user event have finished, Ember flushes the queue,
propagating the changes downward. In this case, that means that the invalidated author property
will invalidate the {{author}} in the DOM, which will make a single request to recompute the
information and update itself once.

This mechanism is fundamental to Ember. In Ember, you should always assume that the side-
effects of a change you make will happen later. By making that assumption, you allow Ember to
coalesce repetitions of the same side-effect into a single call.

In general, the goal of evented systems is to decouple the data manipulation from the side effects
produced by listeners, so you shouldn’t assume synchronous side effects even in a more event-
focused system. The fact that side effects don’t propagate immediately in Ember eliminates the
temptation to cheat and accidentally couple code together that should be separate.

Side-Effect Callbacks

Since you can’t rely on synchronous side-effects, you may be wondering how to make sure that
certain actions happen at the right time.

For example, imagine that you have a view that contains a button, and you want to use jQuery UI to
style the button. Since a view’s appendmethod, like everything else in Ember, defers its side-effects,
how can you execute the jQuery UI code at the right time?

The answer is lifecycle callbacks.

1 App.Button = Ember.View.extend({

2 tagName: 'button',

3 template: Ember.Handlebars.compile("{{view.title}}"),

4

5 didInsertElement: function() {

6 this.$().button();

7 }

8 });

9

10 var button = App.Button.create({

11 title: "Hi jQuery UI!"

12 }).appendTo('#something');

In this case, as soon as the button actually appears in theDOM, Emberwill trigger the didInsertElement
callback, and you can do whatever work you want.

The lifecycle callbacks approach has several benefits, even if we didn’t have to worry about deferred
insertion.

Understanding Ember.js 272

First, relying on synchronous insertion means leaving it up to the caller of appendTo to trigger
any behavior that needs to run immediately after appending. As your application grows, you may
find that you create the same view in many places, and now need to worry about that concern
everywhere.

The lifecycle callback eliminates the coupling between the code that instantiates the view and its
post-append behavior. In general, we find that making it impossible to rely on synchronous side-
effects leads to better design in general.

Second, because everything about the lifecycle of a view is inside the view itself, it is very easy for
Ember to re-render parts of the DOM on-demand.

For example, if this button was inside of an {{#if}} block, and Ember needed to switch from the
main branch to the else section, Ember can easily instantiate the view and call the lifecycle callbacks.

Because Ember forces you to define a fully-defined view, it can take control of creating and inserting
views in appropriate situations.

This also means that all of the code for working with the DOM is in a few sanctioned parts of your
application, so Ember has more freedom in the parts of the render process outside of these callbacks.

Observers

In some rare cases, you will want to perform certain behavior after a property’s changes have
propagated. As in the previous section, Ember provides a mechanism to hook into the property
change notifications.

Let’s go back to our salutation example.

1 App.PostController = Ember.ObjectController.extend({

2 author: function() {

3 return [this.get('salutation'), this.get('name')].join(' ');

4 }.property('salutation', 'name')

5 });

If we want to be notified when the author changes, we can register an observer. Let’s say that the
view object wants to be notified:

Understanding Ember.js 273

1 App.PostView = Ember.View.extend({

2 controller: null,

3 template: Ember.Handlebars.compile("<h1>{{title}}</h1><h2>{{author}}</h2><div>\

4 {{body}}</div>"),

5

6 authorDidChange: function() {

7 alert("New author name: " + this.get('controller.author'));

8 }.observes('controller.author')

9 });

Ember triggers observers after it successfully propagates the change. In this case, that means that
Ember will only call the authorDidChange callback once in response to each user event, even if both
of salutation and name changed.

This gives you the benefits of executing code after the property has changed, without forcing all
property changes to be synchronous. This basically means that if you need to do some manual work
in response to a change in a computed property, you get the same coalescing benefits as Ember’s
binding system.

Finally, you can also register observers manually, outside of an object definition:

1 App.PostView = Ember.View.extend({

2 controller: null,

3 template: Ember.Handlebars.compile("<h1>{{title}}</h1><h2>{{author}}</h2><div>\

4 {{body}}</div>"),

5

6 didInsertElement: function() {

7 this.addObserver('controller.author', function() {

8 alert("New author name: " + this.get('controller.author'));

9 });

10 }

11 });

However, when you use the object definition syntax, Ember will automatically tear down the
observers when the object is destroyed. For example, if an {{#if}} statement changes from truthy
to falsy, Ember destroys all of the views defined inside the block. As part of that process, Ember also
disconnects all bindings and inline observers.

If you define an observer manually, you need to make sure you remove it. In general, you will want
to remove observers in the opposite callback to when you created it. In this case, you will want to
remove the callback in willDestroyElement.

Understanding Ember.js 274

1 App.PostView = Ember.View.extend({

2 controller: null,

3 template: Ember.Handlebars.compile("<h1>{{title}}</h1><h2>{{author}}</h2><div>\

4 {{body}}</div>"),

5

6 didInsertElement: function() {

7 this.addObserver('controller.author', function() {

8 alert("New author name: " + this.get('controller.author'));

9 });

10 },

11

12 willDestroyElement: function() {

13 this.removeObserver('controller.author');

14 }

15 });

If you added the observer in the init method, you would want to tear it down in the willDestroy
callback.

In general, you will very rarely want to register a manual observer in this way. Because of the
memory management guarantees, we strongly recommend that you define your observers as part
of the object definition if possible.

Routing

There’s an entire page dedicated to managing async within the Ember Router: Asynchronous
Routing³⁶⁰

Keeping Templates Up-to-Date

In order to know which part of your HTML to update when an underlying property changes,
Handlebars will insert marker elements with a unique ID. If you look at your application while
it’s running, you might notice these extra elements:

1 My new car is

2 <script id="metamorph-0-start" type="text/x-placeholder"></script>

3 blue

4 <script id="metamorph-0-end" type="text/x-placeholder"></script>.

Because all Handlebars expressions are wrapped in these markers, make sure each HTML tag stays
inside the same block. For example, you shouldn’t do this:

³⁶⁰http://emberjs.com/guides/routing/asynchronous-routing

http://emberjs.com/guides/routing/asynchronous-routing
http://emberjs.com/guides/routing/asynchronous-routing
http://emberjs.com/guides/routing/asynchronous-routing

Understanding Ember.js 275

1 {{! Don't do it! }}

2 <div {{#if isUrgent}}class="urgent"{{/if}}>

If you want to avoid your property output getting wrapped in these markers, use the unbound helper:

1 My new car is {{unbound color}}.

Your output will be free of markers, but be careful, because the output won’t be automatically
updated!

1 My new car is blue.

Debugging

Debugging Ember and Ember Data

Here are some tips you can use to help debug your Ember application.

Also, check out the ember-extension³⁶¹ project, which adds an Ember tab to Chrome DevTools that
allows you to inspect Ember objects in your application.

Routing

Log router transitions

1 window.App = Ember.Application.create({

2 // Basic logging, e.g. "Transitioned into 'post'"

3 LOG_TRANSITIONS: true,

4

5 // Extremely detailed logging, highlighting every internal

6 // step made while transitioning into a route, including

7 // `beforeModel`, `model`, and `afterModel` hooks, and

8 // information about redirects and aborted transitions

9 LOG_TRANSITIONS_INTERNAL: true

10 });

View all registered routes

³⁶¹https://github.com/tildeio/ember-extension

https://github.com/tildeio/ember-extension
https://github.com/tildeio/ember-extension

Understanding Ember.js 276

1 Ember.keys(App.Router.router.recognizer.names)

Get current route name / path

Ember installs the current route name and path on your app’s ApplicationController as the
properties currentRouteName and currentPath. currentRouteName’s value (e.g. "comments.edit")
can be used as the destination parameter of transitionTo and the {{linkTo}} Handlebars helper,
while currentPath serves as a full descriptor of each parent route that has been entered (e.g.
"admin.posts.show.comments.edit").

1 // From within a Route

2 this.controllerFor("application").get("currentRouteName");

3 this.controllerFor("application").get("currentPath");

4

5 // From within a controller, after specifying `needs: ['application']`

6 this.get('controllers.application.currentRouteName');

7 this.get('controllers.application.currentPath');

8

9 // From the console:

10 App.__container__.lookup("controller:application").get("currentRouteName")

11 App.__container__.lookup("controller:application").get("currentPath")

Views / Templates

Log view lookups

1 window.App = Ember.Application.create({

2 LOG_VIEW_LOOKUPS: true

3 });

Get the View object from its DOM Element’s ID

1 Ember.View.views['ember605']

View all registered templates

1 Ember.keys(Ember.TEMPLATES)

Handlebars Debugging Helpers

Understanding Ember.js 277

1 {{debugger}}

2 {{log record}}

Controllers

Log generated controller

1 window.App = Ember.Application.create({

2 LOG_ACTIVE_GENERATION: true

3 });

Ember Data

View ember-data’s identity map

1 // all records in memory

2 App.__container__.lookup('store:main').recordCache

3

4 // attributes

5 App.__container__.lookup('store:main').recordCache[2].get('data.attributes')

6

7 // loaded associations

8 App.__container__.lookup('store:main').recordCache[2].get('comments')

Observers / Binding

See all observers for a object, key

1 Ember.observersFor(comments, keyName);

Log object bindings

1 Ember.LOG_BINDINGS = true

Miscellaneous

View an instance of something from the container

Understanding Ember.js 278

1 App.__container__.lookup("controller:posts")

2 App.__container__.lookup("route:application")

Dealing with deprecations

1 Ember.ENV.RAISE_ON_DEPRECATION = true

2 Ember.LOG_STACKTRACE_ON_DEPRECATION = true

Implement an Ember.onerror hook to log all errors in production

1 Ember.onerror = function(error) {

2 Em.$.ajax('/error-notification', {

3 type: 'POST',

4 data: {

5 stack: error.stack,

6 otherInformation: 'exception message'

7 }

8 });

9 }

Import the console

If you are using imports with Ember, be sure to import the console:

1 Ember = {

2 imports: {

3 Handlebars: Handlebars,

4 jQuery: $,

5 console: window.console

6 }

7 };

Errors within an RSVP.Promise

There are times when dealing with promises that it seems like any errors are being ‘swallowed’, and
not properly raised. This makes it extremely difficult to track down where a given issue is coming
from. Thankfully, RSVP has a solution for this problem built in.

You can provide an onerror function that will be called with the error details if any errors occur
within your promise. This function can be anything but a common practice is to call console.assert
to dump the error to the console.

Understanding Ember.js 279

1 Ember.RSVP.configure('onerror', function(error) {

2 Ember.Logger.assert(false, error);

3 });

Errors within Ember.run.later (Backburner.js)

Backburner has support for stitching the stacktraces together so that you can track down where
an erroring Ember.run.later is being initiated from. Unfortunately, this is quite slow and is not
appropriate for production or even normal development.

To enable this mode you can set:

1 Ember.run.backburner.DEBUG = true;

The Run Loop

Ember’s internals and most of the code you will write in your applications takes place in a run
loop. The run loop is used to batch, and order (or reorder) work in a way that is most effective and
efficient.

It does so by scheduling work on specific queues. These queues have a priority, and are processed
to completion in priority order.

Why is this useful?

Very often, batching similar work has benefits.Web browsers do something quite similar by batching
changes to the DOM.

Consider the following HTML snippet:

1 <div id="foo"></div>

2 <div id="bar"></div>

3 <div id="baz"></div>

and executing the following code:

https://github.com/ebryn/backburner.js

Understanding Ember.js 280

1 foo.style.height = "500px" // write

2 foo.offsetHeight // read (recalculate style, layout, expensive!)

3

4 bar.style.height = "400px" // write

5 bar.offsetHeight // read (recalculate style, layout, expensive!)

6

7 baz.style.height = "200px" // write

8 baz.offsetHeight // read (recalculate style, layout, expensive!)

In this example, the sequence of code forced the browser to recalculate style, and relayout after each
step. However, if we were able to batch similar jobs together, the browser would have only needed
to recalulate the style and layout once.

1 foo.style.height = "500px" // write

2 bar.style.height = "400px" // write

3 baz.style.height = "200px" // write

4

5 foo.offsetHeight // read (recalculate style, layout, expensive!)

6 bar.offsetHeight // read (fast since style and layout is already known)

7 baz.offsetHeight // read (fast since style and layout is already known)

Interestingly, this pattern holds true for many other types of work. Essentially, batching similar work
allows for better pipelining, and further optimization.

Let’s look at a similar example that is optimized in Ember, starting with a User object:

1 var User = Ember.Object.extend({

2 firstName: null,

3 lastName: null,

4 fullName: function() {

5 return this.get('firstName') + ' ' + this.get('lastName');

6 }.property('firstName', 'lastName')

7 });

and a template to display its attributes:

1 {{firstName}}

2 {{fullName}}

If we execute the following code without the run loop:

Understanding Ember.js 281

1 var user = User.create({firstName:'Tom', lastName:'Huda'});

2 user.set('firstName', 'Yehuda');

3 // {{firstName}} and {{fullName}} are updated

4

5 user.set('lastName', 'Katz');

6 // {{lastName}} and {{fullName}} are updated

We see that the browser will rerender the template twice.

1 var user = User.create({firstName:'Tom', lastName:'Huda'});

2 user.set('firstName', 'Yehuda');

3 user.set('lastName', 'Katz');

4

5 // {{firstName}} {{lastName}} and {{fullName}} are updated

However, if we have the run loop in the above code, the browser will only rerender the template
once the attributes have all been set.

1 var user = User.create({firstName:'Tom', lastName:'Huda'});

2 user.set('firstName', 'Yehuda');

3 user.set('lastName', 'Katz');

4 user.set('firstName', 'Tom');

5 user.set('lastName', 'Huda');

In the above example with the run loop, since the user’s attributes end up at the same values as
before execution, the template will not even rerender!

It is of course possible to optimize these scenarios on a case-by-case basis, but getting them for free
is much nicer. Using the run loop, we can apply these classes of optimizations not only for each
scenario, but holistically app-wide.

How does the Run Loop work in Ember?

As mentioned earlier, we schedule work (in the form of function invocations) on queues, and these
queues are processed to completion in priority order.

What are the queues, and what is their priority order?

1 Ember.run.queues

2 // => ["sync", "actions", "routerTransitions", "render", "afterRender", "destroy\

3 "]

Because the priority is first to last, the “sync” queue has higher priority than the “render” or “destroy”
queue.

Understanding Ember.js 282

What happens in these queues?

• The sync queue contains binding synchronization jobs
• The actions queue is the general work queue and will typically contain scheduled tasks e.g.
promises

• The routerTransitions queue contains transition jobs in the router
• The render queue contains jobs meant for rendering, these will typically update the DOM
• The afterRender contains jobs meant to be run after all previously scheduled render tasks
are complete. This is often good for 3rd-party DOM manipulation libraries, that should only
be run after an entire tree of DOM has been updated

• The destroy queue contains jobs to finish the teardown of objects other jobs have scheduled
to destroy

In what order are jobs executed on the queues?

The algorithm works this way:

1. Let the highest priority queue with pending jobs be: CURRENT_QUEUE, if there are no queues
with pending jobs the run loop is complete

2. Let a new temporary queue be defined as WORK_QUEUE
3. Move jobs from CURRENT_QUEUE into WORK_QUEUE

4. Process all the jobs sequentially in WORK_QUEUE

5. Return to Step 1

An example of the internals

Rather than writing the higher level app code that internally invokes the various run loop scheduling
functions, we have stripped away the covers, and shown the raw run-loop interactions.

Working with this API directly is not common in most Ember apps, but understanding this example
will help you to understand the run-loops algorithm, which will make you a better Ember developer.

http://emberjs.com.s3.amazonaws.com/run-loop-guide/index.html

FAQs

What do I need to know to get started with Ember? For basic Ember app development scenarios,
nothing. All common paths are paved nicely for you and don’t require working with the run loop
directly.

What do I need to know to actually build an app? It is possible to build good apps without
working with the run loop directly, so if you don’t feel the need to do so, don’t.

Understanding Ember.js 283

What scenarios will require me to understand the run loop? The most common case you will
run into is integrating with a non-Ember API that includes some sort of asynchronous callback. For
example:

• AJAX callbacks
• DOM update and event callbacks
• Websocket callbacks
• setTimeout and setInterval callbacks
• postMessage and messageChannel event handlers

You should begin a run loop when the callback fires.

How do I tell Ember to start a run loop?

1 $('a').click(function(){

2 Ember.run(function(){ // begin loop

3 // Code that results in jobs being scheduled goes here

4 }); // end loop, jobs are flushed and executed

5 });

What happens if I forget to start a run loop in an async handler? As mentioned above,
you should wrap any non-Ember async callbacks in Ember.run. If you don’t, Ember will try to
approximate a beginning and end for you. Here is some pseudocode to describe what happens:

1 $('a').click(function(){

2 // Ember or runloop related code.

3 Ember.run.start();

4

5 // 1. we detect you need a run-loop

6 // 2. we start one for you, but we don't really know when it ends, so we guess

7

8 nextTick(function() {

9 Ember.run.end()

10 }, 0);

11 });

This is suboptimal because the current JS frame is allowed to end before the run loop is flushed,
which sometimes means the browser will take the opportunity to do other things, like garbage
collection. GC running in between data changing and DOM rerendering can cause visual lag and
should be minimized.

Understanding Ember.js 284

When I am in testing mode, why are run-loop autoruns disabled? Some of Ember’s test helpers
are promises that wait for the run loop to empty before resolving. This leads to resolving too early if
there is code that is outside the run loop and gives erroneous test failures. Disabling autoruns help
you identify these scenarios and helps both your testing and your application!

Contributing To Ember.js
Adding New Features

In general, new feature development should be done on master.

Bugfixes should not introduce new APIs or break existing APIs, and do not need feature flags.

Features can introduce new APIs, and need feature flags. They should not be applied to the release
or beta branches, since SemVer requires bumping the minor version to introduce new features.

Security fixes should not introduce new APIs, but may, if strictly necessary, break existing APIs.
Such breakages should be as limited as possible.

Bug Fixes

Urgent Bug Fixes

Urgent bugfixes are bugfixes that need to be applied to the existing release branch. If possible, they
should be made on master and prefixed with [BUGFIX release].

Beta Bug Fixes

Beta bugfixes are bugfixes that need to be applied to the beta branch. If possible, they should be
made on master and tagged with [BUGFIX beta].

Security Fixes

Security fixes need to be applied to the beta branch, the current release branch, and the previous
tag. If possible, they should be made on master and tagged with [SECURITY].

Features

Features must always be wrapped in a feature flag. Tests for the feature must also be wrapped in a
feature flag.

Because the build-tools will process feature-flags, flags must use precisely this format. We are
choosing conditionals rather than a block form because functions change the surrounding scope
and may introduce problems with early return.

Contributing To Ember.js 286

1 if (Ember.FEATURES.isEnabled("feature")) {

2 // implementation

3 }

Tests will always run with all features on, so make sure that any tests for the feature are passing
against the current state of the feature.

Commits

Commits related to a specific feature should include a prefix like [FEATURE htmlbars]. This will
allow us to quickly identify all commits for a specific feature in the future. Features will never be
applied to beta or release branches. Once a beta or release branch has been cut, it contains all of the
new features it will ever have.

If a feature has made it into beta or release, and you make a commit to master that fixes a bug in
the feature, treat it like a bugfix as described above.

Feature Naming Conventions

1 Ember.FEATURES["<packageName>-<feature>"] // if package specific

2 Ember.FEATURES["container-factory-injections"]

3 Ember.FEATURES["htmlbars"]

Builds

The Canary build, which is based off master, will include all features, guarded by the conditionals
in the original source. This means that users of the canary build can enable whatever features they
want by enabling them before creating their Ember.Application.

1 Ember.FEATURES["htmlbars"] = true;

features.json

The root of the repository will contain a features.json file, which will contain a list of features that
should be enabled for beta or release builds.

This file is populatedwhen branching, andmay not gain additional features after the original branch.
It may remove features.

Contributing To Ember.js 287

1 {

2 "htmlbars": true

3 }

The build process will remove any features not included in the list, and remove the conditionals for
features in the list.

Travis Testing

For a new PR:

1. Travis will test against master with all feature flags on.
2. If a commit is tagged with [BUGFIX beta], Travis will also cherry-pick the commit into beta,

and run the tests on that branch. If the commit doesn’t apply cleanly or the tests fail, the tests
will fail.

3. If a commit is tagged with [BUGFIX release], Travis will also cherry-pick the commit into
release, and run the test on that branch. If the commit doesn’t apply cleanly or the tests fail,
the tests will fail.

For a new commit to master:

1. Travis will run the tests as described above.
2. If the build passes, Travis will cherry-pick the commits into the appropriate branches.

The idea is that new commits should be submitted as PRs to ensure they apply cleanly, and once the
merge button is pressed, Travis will apply them to the right branches.

Go/No-Go Process

Every six weeks, the core team goes through the following process.

Beta Branch

All remaining features on the beta branch are vetted for readiness. If any feature isn’t ready, it is
removed from features.json.

Once this is done, the beta branch is tagged and merged into release.

Contributing To Ember.js 288

Master Branch

All features on the master branch are vetted for readiness. In order for a feature to be considered
“ready” at this stage, it must be ready as-is with no blockers. Features are a no-go even if they are
close and additional work on the beta branch would make it ready.

Because this process happens every six weeks, there will be another opportunity for a feature to
make it soon enough.

Once this is done, the master branch is merged into beta. A features.json file is added with the
features that are ready.

Beta Releases

Every week, we repeat the Go/No-Go process for the features that remain on the beta branch. Any
feature that has become unready is removed from the features.json.

Once this is done, a Beta release is tagged and pushed.

Repositories

Ember is made up of several libraries. If you wish to add a feature or fix a bug please file a pull
request against the appropriate repository. Be sure to check the libraries listed below before making
changes in the Ember.js repository.

Main Repositories

Ember.js - The main repository for Ember.

• https://github.com/emberjs/ember.js³⁶²

Ember Data - A data persistence library for Ember.js.

• https://github.com/emberjs/data³⁶³

Ember Website - Source for http://www.emberjs.com³⁶⁴ including these guides.

• https://github.com/emberjs/website³⁶⁵

³⁶²https://github.com/emberjs/ember.js
³⁶³https://github.com/emberjs/data
³⁶⁴http://www.emberjs.com
³⁶⁵https://github.com/emberjs/website

https://github.com/emberjs/ember.js
https://github.com/emberjs/data
http://www.emberjs.com
https://github.com/emberjs/website
https://github.com/emberjs/ember.js
https://github.com/emberjs/data
http://www.emberjs.com
https://github.com/emberjs/website

Contributing To Ember.js 289

Libraries Used By Ember

These libraries are part of the Ember.js source, but development of them takes place in a seperate
repository.

packages/ember-metal/lib/vendor/backburner.js

• backburner.js - Implements the Ember run loop.
• https://github.com/ebryn/backburner.js³⁶⁶

packages/ember-routing/lib/vendor/route-recognizer.js

• route-recognizer.js - A lightweight JavaScript library that matches paths against registered
routes.

• https://github.com/tildeio/route-recognizer³⁶⁷

packages/ember-routing/lib/vendor/router.js

• router.js - A lightweight JavaScript library that builds on route-recognizer and rsvp to provide
an API for handling routes.

• https://github.com/tildeio/router.js³⁶⁸

packages/metamorph

• Metamorph.js - Used by Ember for databinding handlebars templates
• https://github.com/tomhuda/metamorph.js³⁶⁹

packages/rsvp

• RSVP.js - Implementation of the of Promises/A+ spec used by Ember.
• https://github.com/tildeio/rsvp.js³⁷⁰

³⁶⁶https://github.com/ebryn/backburner.js
³⁶⁷https://github.com/tildeio/route-recognizer
³⁶⁸https://github.com/tildeio/router.js
³⁶⁹https://github.com/tomhuda/metamorph.js
³⁷⁰https://github.com/tildeio/rsvp.js

https://github.com/ebryn/backburner.js
https://github.com/tildeio/route-recognizer
https://github.com/tildeio/router.js
https://github.com/tomhuda/metamorph.js
https://github.com/tildeio/rsvp.js
https://github.com/ebryn/backburner.js
https://github.com/tildeio/route-recognizer
https://github.com/tildeio/router.js
https://github.com/tomhuda/metamorph.js
https://github.com/tildeio/rsvp.js

	Table of Contents
	Ember.js Guides
	Getting Started
	Planning The Application
	Creating a Static Mockup
	Obtaining Ember.Js And Dependencies
	Modeling Data
	Using Fixtures
	Displaying Model Data
	Displaying A Model's Complete State
	Creating A New Model Instance
	Marking a Model as Complete or Incomplete
	Displaying the Number of Incomplete Todos
	Toggling Between Showing and Editing States
	Accepting Edits
	Deleting a Model
	Adding Child Routes
	Transitioning to Show Only Incomplete Todos
	Transitioning to Show Only Complete Todos
	Transitioning back to Show All Todos
	Displaying a Button to Remove All Completed Todos
	Indicating When All Todos Are Complete
	Toggling All Todos Between Complete and Incomplete
	Replacing the Fixture Adapter with Another Adapter

	Getting Ember
	Ember Builds
	Bower
	RubyGems

	Concepts
	Core Concept
	Naming Conventions

	The Object Model
	Classes and Instances
	Computed Properties
	Computed Properties and Aggregate Data with @each
	Observers
	Bindings
	One-Way Bindings
	Reopening Classes and Instances
	Bindings, Observers, Computed Properties: What Do I Use When?

	Application
	Creating an Application

	Templates
	The Application Template
	Handlebars Basics
	Conditionals
	Displaying a List of Items
	Changing Scope
	Binding Element Attributes
	Binding Element Class Names
	Links
	Actions
	Input Helpers
	Development Helpers
	Rendering with Helpers
	Writing Helpers

	Routing
	Introduction
	Defining Your Routes
	Generated Objects
	Specifying A Routes Model
	Setting Up A Controller
	Rendering A Template
	Redirecting
	Specifying The URL Type
	Query Parameters
	Asynchronous Routing
	Loading / Error Substates
	Preventing And Retrying Transitions

	Components
	Introduction
	Defining A Component
	Passing Properties To A Component
	Wrapping Content in a Component
	Customizing A Component's Element
	Handling User Interaction with Actions
	Sending Actions from Components to Your Application

	Controllers
	Introduction
	Representing A Single Model With ObjectController
	Representing Multiple Models With ArrayController
	Managing Dependencies Between Controllers

	Models
	Introduction
	Defining Models
	Creating Deleting Records
	Pushing Records Into The Store
	Persisting Records
	Finding Records
	Working With Records
	Using Fixtures
	The REST Adapter
	Connecting to an HTTP Server
	Handling Metadata
	Customizing Adpters
	Frequently Asked Questions

	Views
	Introduction
	Defining A View
	Handling Events
	Customizing A Views Element
	Built-In Views
	Manually Managing View Hierachy

	Enumerables
	Enumerables

	Testing
	Introduction
	Integration Test
	Test Helpers
	Testing User Interaction
	Unit Testing Basics
	Unit Test Helpers
	Unit Test Components
	Testing Controllers
	Testing Routes
	Testing Models
	Automating Tests with Runners

	Configuring Ember.js
	Disabling Prototype Extensions
	Embedding Applications
	Feature Flags

	Cookbook
	Introduction
	Contributing
	User Interface & Interaction
	Event Handling & Data Binding
	Helpers & Components
	Working with Objects

	Understanding Ember.js
	The View Layer
	Managing Asynchrony
	Keeping Templates Up-to-Date
	Debugging
	Routing
	Views / Templates
	Controllers
	Ember Data
	Observers / Binding
	Miscellaneous
	The Run Loop

	Contributing To Ember.js
	Adding New Features
	Repositories

